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ABSTRACT

TEMPORAL AGGREGATION AND RELATED PROBLEMS IN MULTIVARIATE

TIME SERIES ANALYSIS

Ceylan Yozgatligil
Doctor of Philosophy
Temple University, 2007

Doctoral Advisory Committee Chair: Prof. William W. S. Wei

The time series data used are generally sums over time of data generated more
frequently than the reporting interval. In this research, we focused on the effect of
temporal aggregation on a vector autoregressive moving average (VARMA) model
structure, a cointegration relationship, the causality, and multiplicative seasonal VARMA
processes.

First, we worked on the cointegration problem and showed that while the
cointegrating matrix remains unchanged, temporal aggregation changes the model form
and affects the results of the cointegration trace test. We derived a modified test statistic
and proved that the limiting distribution of the new statistic is the same as that of
Johansen’s trace test statistic. We can use Johansen’s table of critical values but we have

to use the modified test statistic that incorporates the effect of aggregation in computing
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the test statistic when aggregate data are used for the test.

The use of aggregate data for causal inference is common in practice. Since the
form of the vector time series model changes after aggregation, non-causality conditions
for the basic model and for the model of aggregates are different. Temporal aggregation
often deduces a causal relationship between aggregate variables. Because the standard
test fails to detect cointegration in aggregate series, we developed a modified testing
procedure to test the Granger non-causality in cointegrated systems for aggregates.

Many business and economic time series show seasonality. The best way to
present seasonality is by using multiplicative models. We studied the representation
problem in multiplicative seasonal VARMA models and showed that the correct order of
non-seasonal and seasonal parameters in the representation improves parameter
estimation and forecasts. We recommend fitting a multiplicative model by using
different representations and making selection with information criteria. We also derived

the model for aggregates of multiplicative processes.
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 Introduction

Economic theory states that certain pairs of economic variables should not drift
too far apart, at least in the long-run. If they diverge too much, other forces such as
market mechanisms or govermﬁent intervention will bring them back together. The

equilibrium relationships have a similar behavior. If X, is a vector of time series
variables, then equilibrium occurs when the specific constraint z, = f'x, is stationary.
Although individual variables in x, are not be stationary, if there is equilibrium, then
these variables will move together and z, becomes stable. In other words, each

individual variable is integrated, but a linear combination of these component variables is
stationary. Integrated component variables with this property are said to be cointegrated.
One of the most important goals of empiricél research is to explain the causal
relationship among a set of variables such as money-income, revenue-expenditure,
inflation-growth, and so on. It has been recognized that the existence of a high correlation
among variates does not imply that they are causally related (Pierce and Haugh, 1977).
The most well-known method to measure the causal relationship between variables is the
Granger causality which has been introduced by Granger (1969). This concept is defined
in terms of predictability and exploits the direction of the flow of time to achieve a causal
ordering of associated variables. It is appropriate for empirical model building strategies

because it does not rely on the specification of a statistical model.
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Multivariate vector time series processes are very useful for studying the
relationship between several variables. Many business and economic time series have a
seasonal behavior, which means that they show a recurrence of some recognizable pattern
after some regular interval (called the seasonal period and denoted by s). Some applied
researchers prefer to use officially adjusted time series; however, many studies emphasize
the importance of using unadjusted time series. Most notably, Sims (1974), Wallis
(1974) and Ghysels (1988) claim that the official seasonal adjustment results create
dynamic, biased relationships and provide a weak relationship between seasonally
adjusted series of production, sales, and inventories. Because of these and other
drawbacks of seasonally adjusted series, multiplicative vector time series models for
unadjusted seasonal series are introduced in the literature.

In time series analysis, data are often available in the form of a temporal
aggregation or a systematical sampling. As a result, the analysis, modeling, and testing of
a vector time series is frequently based on aggregated data.

The purpose of this research is to analyze the effects of temporal aggregation
'through the testing of a multivariate time series for cointegration and causality in
cointegrated systems. We will investigate the validity and effectiveness of various
causality and cointegration tests when aggregate time series are used. We will also study
the representation of multiplicative autoregressive moving average models. The
consequences of different representations on parameter estimation, forecasting, and
causality will be examined carefully. From these analyzes, we will determine the best
summary statistic to represent a multiplicative vector process.

The relevant literature will be reviewed first in Chapter 1, which includes the
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presentation of problems. Chapter 2 is the derivation of the multivariate autoregressive
moving average processes of aggregate data. Chapter 3 investigates the testing procedure
for cointegration under temporal aggregation. Chapter 4 studies the effects of temporal
aggregation on the Granger causality and the causality tests in cointegrated systems.
Chapter 5 examines the problem of representing multiplicative vector autoregressive
moving average models. Finally, Chapter 6 gives the conclusion and offers further topics

for future research.

1.2 Vector Autoregressive Moving Average Models

Multivariate vector time series processes are very useful for studying the
relationship between several variables. The vector autoregressive moving average
(VARMA) models are used to represent vector time series. In this section, we will

introduce widely used VARMA models in this study.
Let {x,}, =0, £1, +2,.., with x,=(x, X, - X,) be a zero mean,
covariance stationary, purely nondeterministic, k-dimensional vector time series. It is

assumed that {x,} admits the vector autoregressive-moving average VARMA(p,q)

process

9, (B)x, =6,(B)a, (1.D

kx1
where ¢,(B)=1,~¢B-..-¢B* and 6,(B)=I -6B-..—6B° are matrix
polynomials in the backshift operator B, defined by BV, =V, ; for any integer ; and

vector V,. I, is the k-dimensional identity matrix, the ¢’s and 8’s are kxk parameter
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matrices, and a4, is a zero mean white noise vector with E(a,e;)=Q and E(a,a,,,)=0
for s#0. When p=0, the VARMA(0,q) model is referred to as a vector moving average
model of order q; VMA(q) , and when g=0, VARMA( p,0) model is referred to as a vector

autoregressive model of order p; VAR(p). We also assume that the zeroes of the
determinantal polynomial }¢p (B)} are all outside the unit circle so that x, is second order

stationary and can be expressed as

x, = Z‘P 4, =B, 1.2)
=0

where W(B) =¢p(3)"‘9q(3)=2\11j3f with ¥, = I and Z j|®,| <. Furthermore,
Jj=0 j=0

we assume that the zeroes of the determinantal polynomial }Bq (B)' are all outside the unit

circle so that x, is invertible and can be expressed as

II(B)x, =a, (1.3)

where TI(B) = 6,(B)"' 4, (B) =—an3f with I, =1 and Z[njg <.
j=0 ’ j=0

1.3 Temporal Aggregation and Times Series Models

A time series variable is either a flow variable or a stock variable. A flow
variable can be obtained through aggregation over equal time intervals. The elements of
the aggregate process of a flow variable are often partial sums of the basic series; that is,

1

X ={X,}, ={mer_,} . Stock variables are obtained by systematic sampling;
=0 T=0
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therefore, only the m™ elements of the original process are observed. Thus, the aggregate
process for a stock variable is X ={X,} ={x,,}, . For this study, we will concentrate
on flow variables. Let x, be the equally spaced basic scries and assume that the

observed time series X, is the m-period non-overlapping aggregates of x, defined as
X; =% xur = (HBHAB™ (14)
Jj=

where T is the aggregate time unit and m is in fixed order of aggregation. Thus, X, is
called an aggregated series and x, is called a basic series. For example, if x, is a
monthly series and m is 3, then the X, are the quarterly sum of the monthly series x, .
The number of observations of X, is N =[n/m], where n is the sample size of the basic
series and m is the aggregation period. It is assumed that the aggregated series X, is

available beginning with 7' =1.

The literature of aggregation started with Quenoville (1958) for a stationary
univariate series. Quenoville discussed the effects of aggregation on ARMA (p, q) mixed
models and he dealt with the case when q <p. Amemiya and Wu (1972) dealt with pure

moving average models. They gave the MA order, g, of the mixed model for the

aggregates to be equal to [p+1-(p+1)/m], where [-] denoted the integer part of ..

Furthermore, they proved that the MA polynomial for the aggregate data is invertible. If
the data are sums for non-overlapping intervals, Telser (1967, 1976) showed the least
squares estimates of the autoregressive coefficients are inconsistent. In his paper, the
relationship between the basic and aggregated autocovariances were derived for the first

order autoregression with aggregation order m=2. Telser reports that a purely

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



6
autoregressive model (AR(p)) transforms into a mixed model of the form ARMA (p, q)

where the roots of the aggregated models AR polynomial are equal to the m-th power of
those of the basic series model. Brewer (1973) also worked on the effect of aggregation
on the general ARMA (p, q) model. He found some aspects of Quenoville’s results to be
misleading, which included Quenoville’s discussion of the possibility for a pure
autoregressive model to remain pure autoregressive after aggregation. Brewer showed
that the ARMA (p, q) process would be transformed to ARMA (p, r), where r is equal to

[p+1+(g—p—-1)/m]. Those values are the maximum values of the ARMA orders.

Tiao and Wei (1976) investigated the effect of temporal aggregation on the dynamic

relationship between two distinct time series variables. Given the dynamic model

== v(BJAB) u(B) || a,
gL A(B) 0 |le

where a, ~ N(0,07) and e, ~ N(0,5”) are independent, for the basic series, they
obtained the model and its characteristics for the aggregated series. They pointed out that
in the estimation of the parameters in the basic dynamic model, it is better to use the basic
series if they are available because a one-sided relation transformed into a feedback
system. Their results are an extension of Amemiya and Wu in the way they show that
when the time series is generated from the AR(p) process, an aggregated series follows a
stationary and invertible ARMA time series. The first researcher to deal with the effects
of aggregation on a non-stationary ARIMA model was Tiao (1972). Tiao examined the
effects of aggregation on the integrated moving average processes, IMA (d, q). He found
that for any q, when m becomes larger, an aggregate time series of this type will be closer

to the IMA (d, d) model. Tiao extended this result to the general ARIMA (p, d, q)
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processes. Tiao and Wei (1976) investigated the effects of temporal aggregation on the
dynamic relationship between two distinct time series variables. They are the first
researchers to represent the fact that the non-causal relationship turns out to be a causal
one after temporal aggregation of flow variables. The effects of aggregation on the
univariate, multiplicative seasonal ARIMA (P, D, Q)s(p, d, q) models was studied by Wei
(1978a). Wei’s results show that the ARIMA (P, D, st(p, d, q9) model was transformed
into the ARIMA (P, D, Q)ym(p, d, r) model, where the coefficients of the seasonal part of

the model do not change and where r is equal to [p+d+1+(g—p—d—-1)/m]. Wei

(1978b) reveals the effects of temporal aggregation on parameter estimation in a finite
distributed lag model through the least squares procedure. Liitkepohl (1986)
demonstrates that if the basic series has a vector ARMA representation, the aggregate
series has also a vector ARMA representation. However, Liitkepohl did not really solve
the aggregate model in terms of aggregate variables, nor did he offer an explicit model
form for the aggregates. Drost and Nijman (1993) have derived ARMA models with
symmetric GARCH errors using aggregate data, while Mamingi (1996) deals with the
impact of temporal a;ggrcgation over time on the Granger causality in error correction
models through the Monte Carlo simulation technique. Marcellino (1999) derives an
aggregate process of stock variables when the basic series follows a vector ARIMA
process, and he studied the effect of temporal aggregation on a set of characteristics such
as causality. Swanson and Breitung (2002) investigate the effect of temporal aggregation
on the Granger causal relations in VAR models by using large aggregation intervals.
They outline the various conditions based on the informational content of error

covariance matrices and the causal structure of VAR. In the following study, we will
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derive models for an aggregate series of flow variables.

1.4 Cointegration
1.4.1 Introduction

Consider a vector series X, measured at equally spaced time intervals. A
univariate, non-stationary process or series x, is said to be integrated of the order d,
denoted as Kd), if its (d - )™ difference is non-stationary but its d™  difference
A?x,=(1-B)’x,, is stationary. A k-dimensional vector time series x, is said to be
cointegrated of the order d, b, denoted as x, ~ CI(d,b), if all the components of x, are
I(d), and there exists a non-zero vector B such that f'x,~ I(d-b), and b>0. The vector
P is called a cointegrating vector (Engle and Granger, 1987). The most widely used
dand b values are d=1 and b=1. In this case z, = f'x, ~1(0), which is a stationary
process. If there are more than two variables contained in x,, then there may be more

than one, such as, % linearly independent cointegrating vectors. If we let A" be a vector

composed of /4 linearly independent cointegrating vectors, then 4'x, will be I(d - b).

When d =1 and b=1, A'x, is a stationary (4x1) vector where

A=[a a, - a].

hxk

If each component of x, is I(1), then there would always exist a Wold

representation

(1-B)x, = ¥(B)a,, (1.5)
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where ‘I’(B)zZ‘PiB‘:‘P(1)+(1—B)‘P*(B) with ¥'(B)= Z—{ZBJ}‘P,. ,

i=] j=

o0

¥(0)=1, and {r'¥,}”  isabsolutely summable; i.c., Zrl‘l’

r=0

j<oo, W, is the i" row

r.i

~ and the j™ column element of ¥, , and the @,’s are zero mean white noise vectors with

the covariance matrix Q. The above difference equation implies that

x, =x,+¥Y()a, +a,+...+a)+n,-1,, (1.6)
where YO =I+¥,+%,+.. and =) —{¥ +¥,,+.Ja_ = Z—asa,_s with
§=0 §=0

a

s

= {\Psﬂ +lPs+2 +"‘} -
The concept of cointegration is first introduced by Granger in 1981. Then, the

following result was obtained by Engle and Granger (1987) and came to be known as the

Granger representation theorem: if x, ~ CI(1,1) with cointegrating rank /4, then

xd
i) ¥(1) isofrank k- h.
ii) There exists a vector ARMA representation

¢(B)x, =6(B)a,, (1.7)

where g(1) has rank /, §(B)= Adj(¥(B))/(1-B)"", Adi(¥(B)) is the adjoint matrix

of W(B) in (1.5), and 6(B) =det(¥(B))/(1- B)h is a scalar lag polynomial.
iii) There exists k x 4 matrices A and vy, both of which have rank #, that
APYD)=0, (1.8)

$(l)=-yA". (1.9
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iv) If the non-stationary process x, has the following ARMA representation

#(B)x, =0(B)a,, (1.10)
where ¢(B)=1+¢B+...+¢,B” and 6(B)=1+6,B+...+6 B’, then (1.10) can also be
written in the following error correction representation

¢ (B)Ax, =z, +6(B)a,
where Ax, =(1-B)x, , z,,=Ax,_, , ¢ (B)=¢()+$(B), ¢(1)=(I—4,—..—¢,) , and
J(B) =¢+(1+B)g,+..+(+B+..+B"" )¢, . That is, error correction representation
can be given by
(#()+4(B))Ax, = yA'x, , +0(B)a,

or

P
Ax, =yA'x,+ Y KAx,,+0(B)a, (1.11)
i=1

P
where yA'=—I+¢ +---+¢_  and &, = ¢ . Equation (1.11) can be expanded as
p i i =

joirh
Ax, =y A'x,  +Rx,  —Kx_,+Kh,x,_, —K,X, s +-+K, X, —K, x,_,+0(B)a,
or
Ax, =(yA'+%,)x +(R, - %,)x,, +"'+(7i,,_1 ~%, )x,_p+, —%,,x,_, +0(B)a,.
When we add and subtract (y4'+X,)x,_, to the right side of the equation, we have
Ax,=(yA +K)Ax,, +(yA' +X,)x,, +---+(7Lp_1 ~X,, )x;_,m ~%,.%,_,+0(B)a,.

We repeat this procedure for the other lags. As a result we obtain the alternative error
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correction representation considers the error correction term at lag #— p and is given by

Ax, =(7A'+x1)Axt-1 +(7'A'+ xz)mt-z +“.+(yA'+xp—1)xt—p+] +yA'x,_,+0(B)a,

p-1
Ax, =) T,Ax, ;+10x,_, +a, (1.12)
j=1
where U,=yA'+k;,=-I+¢++¢,j=1,---,p-1 are kxk,

O=yA' =—I+¢+---+¢,=—¢(1), Aandyare kxh parameter matrices.

The concept of cointegration was further developed by Engle and Yoo (1987,
1991), Phillips and Ouliaris (1990), Stock and Watson (1988), Phillips (1991), Johansen
(1988, 1991, 1994), Liitkepohl and Claessen (1997), and Liitkepohl and Saikkonen

(2000), among others.

1.4.2 Cointegration Tests

1.4.2.1 Residual Based Tests

Residual based tests rely on the residuals calculated from regressions among the
levels of time series. They are designed to test the null hypothesis of no cointegration by
testing that there is a unit root in the residuals against the root that is less than unity. If
the null of a unit root is rejected, then the null of no cointegration is also rejected. Based
on residuals of cointegrating regressions, the tests are the most widely used among
empirical researchers because they are easy to use.

Working within the context of a bivariate system and with at most, one
cointegrating vector, Englé and Granger (1987) proposed to estimate the cointegrating

vector f=(1,B,) by regressing the first component x,, of x, on the second xz;,, using
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ordinary least squares (OLS) (called the cointegrating regression), and then testing

whether the OLS residuals of this regression have a unit root, using the Augmented
Dickey-Fuller (ADF) test (Dickey and Fuller, 1979). However, since the ADF test is
conducted on estimated residuals, the tables of the critical values of this test in Fuller
(1976) no longer apply. The éorrect critical values involved can be found in Engle and
Yoo (1987). Consider the linear cointegrating regressions:

X, =c+fx, +u,, (1.13)
where ¢ is a constant and B is a regression coefficient and u, are the errors of the
cointegrating regression.

The Dickey-Fuller (DF) test is a test based on the residuals of a cointegrating
regression. After residuals are obtained, we consider the following auxiliary regression:

AG, = pii_, +¢,, (1.14)

~ ~ —"\ A' ~ . - ol -
where Au, =u,—u,_,, u,=y,—y,, y,=C+ Bz, , ¢ is an estimated constant and B is an

estimated regression coefficient, p is the auxiliary regression coefficient, and the ¢, are
errors. If p=0, then the residuals will be non-stationary. This means that there is no

cointegration.

The Augmented Dickey Fuller (ADF) test allows for more dynamics in the
regression in (1.14). That is, the test is performed using the following higher order AR
model:

A, = pu,_ +771Aﬁt_1+---+17pAﬁ,_P+g,. (1.15)

For the Phillips’ (1987) Z, test, use the regression, #, =ai, , +v, and compute
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the transformation of the standardized estimator n(a —1) as
n —~1
Z, =n(@-1)—-(1/2)(s, —sf)[n"ZZﬁf_l} , (1.16)
t=2

where
ss=n" YW, (1.17)

and

n

n £
2 _ 1 ) -1 A A
s,=n Zv, +2n Zwlevtv,_S , (1.18)
t=1 s=1

t=5+1

for some choice of lag window such as w, =1-s/({+1), where ¢ is the lag truncation

number. Phillips (1987) suggests using a small value of ¢ because the sample
autocorrelations of the first differenced time series usually decay quickly; it tests the
random walk hypothesis, which allows both dependent and heterogeneous error
sequences.

For the Phillips’ (1987) Z, test, consider the regression: #, =aiu, ,+v, and

compute the transformation of the conventional regression t statistic,

n 1/2 ”
f, = [Z u,z_l] (a@-1) Z n (u,—du,_, )2 as
t=1

t=1

1=2 t=2

z,=(i&f_,} (d—l)/s,w——(1/2)(5‘,3[—-sf)lisn[(n—liﬁtz]] } , (1.19)

where s, and s” as in (1.17) and (1.18). Also being tested is the random walk

hypothesis that allows both dependent and heterogeneous error sequences.
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Phillips and Ouliaris (1990) demonstrate that ADF and Z, have the same limiting

distribution.  Note that the ADF test is basically a t test in a long autoregression

involving the residuals #,. Based on the results of Phillips and Perron (1988) the Z, test
is more powerful when compared with Z, and ADF for the models with positive serial
correlation. For models with moving average errors and negative serial correlation Z,
and Z, tests are not recommended. In these cases, the ADF test is preferable. Moreover,

the simulation study of Engle and Granger (1987) also suggests using this type of test.

Both Z, and Z, tests have no cointegration as the null hypothesis. Park (1990)

proposes a test for unit root and cointegration using the variable addition approach by
regressing the OLS residuals of the cointegrating regression on the powers of time and
testing whether the coefficients involved are jointly zero. This same idea has been used
by Bierens and Guo (1993) to test the (trend) stationarity against the unit root hypothesis.
However, Park's approach requires consistent estimation of the long-run variance for
errors made by the true cointegrating regression by a Newey-West (1987) type estimator,
one which reduces a considerable amount of asymptotic power of the test. Furthermore,
the tests of Hansen (1992) and Park (1992) are based on a single cointegrating regression,
and both tests employ variants of the instrumental variables estimation method of Phillips
and Hansen (1990). Finally, Boswijk (1994, 1995) links the single-equation and system
approaches by using structural single-equations as a basis for cointegration analysis.

The above approaches test the null or alternative hypothesis of an absence of
cointegration, but if the tests indicate the presence of cointegration in systems with three

variables or more, we still don't know how many linear independent cointegrating vectors
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there are. In such cases one may use the approach of Stock and Watson (1988), which is
a multivariate extension of the Engle-Granger and Phillips-Ouliaris tests. The basic idea

is to linearly transform the k-variate cointegrated process of x, with say, the # linear
independent cointegrating vectors such that the first # components of the transformed x,

are stationary, and the last k&~ components, stacked in a vector w; are integrated. The

transformation matrix involved can be estimated using principal components of x,. w;

can then be tested to see whether it is a k— variate unit root process, using a multivariate
version of the ADF test or the Phillips (1987) test. The critical values of this test differ

according to whether the initial value x, is non-zero or not and whether the unit root

process x, has drifted or not.

Other studies on residual based cointegration tests inciude Park (1990), Bierens
and Guo (1993), Hansen (1992) and Park (1992), Phillips and Hansen (1990), Boswijk

(1994, 1995), and Stock and Watson (1988).

1.4.2.2 The Johansen Trace and Maximal Eigenvalue Tests

To test whether the variables are cointegrated or not, one of the well-known tests
is the Johansen trace test. The Johansen test is used to test for the existence of
cointegration and is based on the estimation of the ECM by the maximum likelihood,
under various assumptions about the trend or intercepting parameters, and the number 4

of cointegrating vectors, and then conducting likelihood ratio tests. Assuming that the

ECM errors a, are independent N[0, Q] distribution, and given the cointegrating

restrictions on the trend or intercept parameters, the maximum likelihood L,.{(%) is a
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function of the cointegration rank 4. The trace test is based on the log-likelihood ratio

In[Lpax(P)/ Lmax(k)], and is conducted sequentially for # = &-1,...,1,0. The name comes
from the fact that the test statistics involved are the trace (the sum of the diagonal
elements) of a diagonal matrix of generalized eigenvalues. This test examines the null
hypothesis that the cointegration rank is less than or equal to 4, against the alternative that
the cointegration rank is greater than 4. If the trace is greater than the critical value for a
certain rank, then the null hypothesis that the cointegration rank is equal to 4 is rejected.
Consider a non-stationary cointegrated VAR(p) model
(I-¢B-...—¢,B")x, =a,
where a, are normally distributed with mean 0 and covariance matrix Q. In a series of

influential papers, Johansen (1988, 1991), and Johansen and Juselius (1990) proposed
practical full maximum likelihood estimation and testing approaches based on the error
correction representation (ECM) in the Equation (1.11).
p-i
Ax,=Td,+ Y T,Ax, ;+IIx, , +a,. (1.20)
= .

where Ax, =x,—x,,, d is a vector of deterministic variables, such as constant and

seasonal dummy variables, I', =~I+¢ +---+4,,j=1,---,p-1 are kxk, [I=yA’, A and
p-1

y are kxh parameter matrices, the a, are i.i.d. N0, Q) errors, and det( -ZI‘ ij) has
=t

all of its roots outside the unit circle.

The ECM in the Equation (1.20) is based on the Engle-Granger (1987) error

correction representation theorem for cointegrated systems, and the asymptotic inference
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involved is related to the work of Sims, Stock, and Watson (1990). By step-wise

concentrating all the parameter matrices in the likelihood function out except for the
matrix 4, Johansen shows that the maximum likelihood estimator of 4 can be derived as
the solution of a generalized eigenvalue problem. Likelihood ratio tests of hypotheses
about the number of cointegrating vectors can then be based on these ecigenvalues.
Moreover, Johansen (1988) also proposes likelihood ratio tests for linear restrictions on
these cointegrating vectors.

Initially, Johansen (1988) considers the case where d; is absent. Eventually,
Johansen (1991) extends his approach to the case where d; contains an intercept and
seasonal dummy variables, and in 1994 he also includes a time trend in d, but no
seasonal dummy variables are allowed. These three cases lead to different null
distributions of the likelihood ratio tests of the number of cointegrating vectors.
Moreover, possible restrictions on the vector of intercepts or the vector of trend
coefficients may also lead to different null distributions. Therefore, the application of
Johansen's tests actually requires some prior knowledge about the true parameters of the
ECM in the Equation (1.19).

The Johansen test for the existence of cointegration is based on the estimation of
the above ECM by the maximum likelihood and is used to test the hypothesis

H, : Rank(I1) < h, where h is less than k. This formulation shows that I(1) models form
nested sequence models H(0) <---< H(h) c--- < H(k), where H(k) is the unrestricted
VAR model or I{0) model, and H(0) corresponds to the restriction IT=0, which is the

VAR model for indifferences. Since I1=yA", it is equivalent to test that 4 and y are
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of full column rank 4, the number of independent cointegrating vectors that forms the
matrix 4. The test has been named the Johansen trace test because the likelihood ratio
test statistic is the trace of a diagonal matrix of generalized eigenvalues from IT.

Under some regularity conditions, we can write the cointegrated process x, as an
Error Correction Model (ECM):

Ax,=T'\Ax,  +..+I Ax

1-p+l +Hxl——p +at (121)
where A is the difference operator (i.e., Ax, =x, —x, ), the a,'s are i.i.d. N(0,Q).
(1.21) can be written as

Z, =TZ,+0Z,, +a, (1.22)

where Z,, = Ax,, Z,, =(Ax; ,,...Ax; ), Z,, =x

t-p>

r=T,....I',)and a, ~N(0,Q).
For the fixed value of I =y A4, the maximum likelihood estimation consists of a

regression of Z,, ~yA'Z, on Z,, giving the normal equations

'2,2,=TY 2,Z,+y4Y 2,2, (1.23)
t=1 =1

=1

defining the product moment matrices as
M, =n"ZZ,.,ZJ;,, i,j=01p. (1.24)
=1

(1.23) can then be written as
M, =TM, +yAM,
or

C=M,M; —yAM, M (1.25)
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and the residuals can be obtained by regressing Z,, and Z,, onZ,, .

Ror = Zor - Mli—ilth
Rp, = Zp, —MP,MI"IIZ".

Thus, the likelihood function is proportional to
Q"2 exp {— {Z (R, ~7 AR, YQ (R, ~7 A ,»}/2}, (1.26)
t=1
and this function is minimized for fixed 4 with
F(A)=S,,A(A'S,,A)" (1.27)

Q(A) = (S, —S,,AA'S,, A" A'S ;) /n (1.28)
where S, =n" ZR,.,R;., =M, - M, MM, . Therefore,
1=l

L2 (A) 4 Q1 S,y — 8, AA'S,, A) A'S, | (129)
=|Sy||4'S ,, A— 48,558 ,, A/ |A'S , 4|
which is based on the general result of

H, BI =|H||c-B'H™'B|=|C||H-BC"'B|.
B C

Johansen (1995, Lemma A.8, p. 224) proves that an equation of
|B'(M,—M,)B|/|5'M,p|
can be minimized by solving the following
M, -M,|=0

where A is the eigenvalue of M, with respect to M, with M, =S, and
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M, =5,5,S,,- And so, (1.29) is then minimized by the choice A = (¥,,-..,V,) Where

0p-
A is the maximum likelihood estimate of cointegrating matrix 4 , and V= (191,-..., v,) are
the eigenvectors of the equation

|AS,,—S pOS;olSO , =0 (1.30)
where A is the eigenvalue of § pOSO'O‘SO , with respect to S and eigenvectors are

normed by V'S,V =1, and ordered by 4 >..>4, >0. The maximized likelihood

function is found from
l. A
SJOERM] | [(EY5) (131)
i=t
Hence, the likelihood ratio statistic for hypothesis H,:IT=yA' is given by

2InA= ——nz In(1—4) (1.32)

i=h+1

where 4, denotes the eigenvalues and are ordered by ﬂ} >..> /ik > 0. If the test statistics

are greater than the critical value for rank 4, then the null hypothesis that the
cointegration rank is equal to 4 is rejected. The statistic ~2InA has the following

limiting distribution which can be expressed in terms of a (k—h) — dimensional

Brownian motion as

_.11

tr ]J-(dY)Y’rfYY'dt:I freary;. (1.33)

The percentiles of the asymptotic distribution for the trace statistic are tabulated in
Johansen (1988, Table 1) using simulation analysis.

An alternative LR statistic, given by
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2InA=-nln(l-1,,), (1.34)

and called the maximal eigenvalue statistic, examines the null hypothesis of 4
cointegrating vectors versus the alternative A+1 cointegrating vectors. The asymptotic
distribution of this statistic is given by the maximum eigenvalue of the stochastic matrix
in

1 1 -1y

I(dY)Y'l: JIYY'dt} [r(ary.

0 0 0

Phillips' (1991) efficient error correction modeling approach differs from that of

Johansen (1988) in that Phillips specifies the ECM directly on the basis of cointegrating

relations x,, =7x,, +u, with 4, a stationary zero mean Gaussian process, which leads to

an ECM of the form
I, — '
Ax, = 0 X, _,tV,. (1.35)
Here & is the number of cointegrating relations and v, is a stationary Gaussian process

with the long run variance matrix Q = lim Var [(l /In )Z vt:] . Phillips shows that under
t=1

the 1.i.d. assumption of v, the maximum likelihood estimator of 7 is efficient, and this
efficiency carries over to the case with dependent errors v, if 7 is estimated by maximum
likelihood on the basis of model (1.35) with i.i.d. N(0,Q) errors v, and provided Q is
replaced by a consistent estimator. In contrast with Johansen's maximum likelihood
method, however, Phillips' efficient maximum likelihood approach has not yet been

widely applied in empirical research, possibily due to the fact that the limited distribution
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of the maximum likelihood estimator of the matrix z depends on the long run variance

matrix Q.

1.4.3 Cointegration and Temporal Aggregation

When the frequency of data generation is lower than that of data collection,
temporal aggregation arises so that only some function of realizations is observable. Most
of the literature is focused on the effects of temporal aggregation in the univariate time
series; however, many properties of interest such as exogeneity, causality, and
cointegration can only be defined in a multivariate context. Marcellino (1996) proves
that both the number and composition of cointegration vectors are the same after
aggregation for stock variables. Marcellino (1999) also theoretically shows that time
aggregation may increase the local power of cointegration tests when the aggregate
variables are obtained by systematic sampling. Haug (2002) studied the effects of time
aggregation and the role of spanning data on the power of commonly used univariate and
multivariate cointegration tests by using the Monte Carlo method. His results show that
size distortions, caused by temporal aggregation, significantly affect relative test
performance. These studies either use systematic sampling or do not take into
consideration the fact that the form of the process changes after temporal aggregation
when flow variables are used.

The Johansen trace tests seem to be the best choice for testing cointegration for a
multivariate time series. However, for an aggregate series, the test statistics and its
limiting distribution are unknown. Therefore, through this research we find a proper

cointegration test statistic and its limiting distribution for an aggregate time series.
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1.5 Causality and Temporal Aggregation

In the applied time series analysis, data are usually sums or averages that become
available less frequently than the generating process, and they are routinely used to test
causality between variables. Tiao and Wei (1976) are the first researchers to show the
result that the non-causal relationship turns out to be a causal one after temporal
aggregation for flow variables. Wei (1982) reveals the effects of temporal aggregation on
parameter estimation in a finite distribution lag model through the least square procedure;
he points out that the loss in efficiency due to aggregation could not be disregarded. This
loss depends on both the level of aggregation and the nature of the input variable. If the
input variable is negatively correlated, the loss is more severe. A Monte Carlo simulation
is conducted by Cunningham and Vilasuso (1995) to investigate the distortion effects of
temporal aggregation; as the span of aggregation widens, the chance of detecting the true

causality decreases. Also, the bivariate time series x,, and x,, is considered by them to
be a stable autoregressive process
33 22
¢ (B) Pp(B) || %y | |ay
where (a,,,a,,) ~ N(0,Q), Q is a diagonal matrix. Cunningham and Vilasuso formed

temporal aggregation by averaging basic observations on non-overlapping intervals and
obtaining

1 ma 1 m=t
Xyg=—2 Xypp; a0d Xpp =—3 Xy,
m j=0 m j=o

While systematic sampling preserves the direction of causality, they point out that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



24

temporal aggregation could change the true one-sided causal relationship into a two-sided
feedback system based on the work of Wei (1982). According to their simulation results,
the probability of failing to reject false hypotheses approaches 90% and at short
aggregation intervals, temporal aggregates are between two and ten times more likely to
fail to detect a true causal relationship. In 1996, Mamingi presents the existence of
Granger causality distortion on error correction models (ECMs) due to aggregation over
time, again using the Monte Carlo simulation. He finds that distortion depends on the
degree of cointegration, the data span, the sample size, and the type of aggregation. He

also mentions that causality distortion is a change of x, causality in basic ECMs into

another type of causality in aggregated ECMs. According to his simulation results,
systematic sampling creates less Granger causality distortion than temporal aggregation,
and a large data span is more harmful to true Granger causality between variables than a
large sample size is. However, there are no theoretical results on aggregation effects on
ECM models. Marcellino (1999) derives the generating mechanism of a temporally
aggregated process when the basic series follows a vector ARIMA process and studies
the effect of temporal aggregation on a set of characteristics, such as causality. It was
discovered that Granger non-causality is usually lost after temporal aggregation.

The earlier studies of aggregation on multiple time series were mostly based upon
simple distributed lag models. Recent studies have started to use vector processes, but
most of these studies support their findings through Monte Carlo experiments. In this
study, we examine the use of aggregate time series in vector time series modeling. First,
we derive the theoretical and numerical vector autoregressive moving average model for

aggregate variables. Next, we examine various tests and investigate the effects of
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temporal aggregation on the causal relationship of these variables. The causality found
between aggregate variables may not be the real phenomenon of the underlying model.
The effect of temporal aggregation on the non-causality test in cointegrated systems is
then investigated.

In a vector autoregressive process, the Granger non-causality of one set of
variables for another is characterized by having no constraints on the autoregressive
coefficients. If the process is stationary, the test for non-causality is usually performed
using Wald (or likelihood ratio) tests which are asymptotically chi-squared. Phillips and
Durlauf (1986), Park and Phillips (1988, 1989), Sims, Stock, and Watson (1990),
Liitkepohl and Reimers (1992), Toda and Phillips (1993), and Caporale and Pittis (1999)
have all shown that the asymptotic theory of Wald tests is much more complex in
cointegrated systems. Sims, Stock and Watson (1990) worked on trivariate systems in
the VAR process and showed that the Wald test has limiting chi-squared distribution if
the time series are cointegrated. However, Toda and Phillips (1993) showed that without
explicit information on the number of unit roots in the system and the rank of certain sub-
matrices in the cointegration space, it is impossible to determine the appropriate limit
theory; even when such information is available the limit theory involves nuisance
parameters and non-standard distributions. Mosconi and Giannini (1992) suggest a
likelihood ratio test which is more efficient by imposing the cointegration constraints
under both the null and the alternative hypotheses. Therefore we will use their approach

to test causality in cointegrated systems for aggregates.

A time series {x,,} is said to cause another time series {x,,} in the sense defined

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



26
by C. W. J. Granger (1969) if the present value of x, can be better predicted by using the

past values of x, and x, rather than using only the past values of x, .
Let the k dimensional vector autoregressive moving average process X, be
partitioned into two vectors x,=(x[,,X,,) where x,, =(y;,...),) and

Xy, =Vt Veen,) are k and k, dimensional vectors respectively, and also

k=k+k,. A time series {xu} is said to cause another time series {xm} if the present

value of x, can be better predicted by using the past values of x; and x, rather than by
using only the past values of x,. Assume the following axioms: the cause cannot come

after the effect, the cause contains some unique information which affects the future
value, and while the strength of casual relations varies over time, their existence is time
invariant (Granger 1980, 1998).

Let 1, be information set from the vector series x,,and x,, up to time t, ie.,
1= {xlys, X, i8S t}. For any information set /,, the best mean square linear predictor of
¥, is denoted by P(y,,|1,). The predictor P(y,,|1,), is the orthogonal projection y,,
on the Hilbert space spanned by the variables in /,. For Gaussian processes, we use

Py 1)=E(y, 1) . The best predictor of x,, is the vector

P(x,,|1)= [P( Visi 1 1)seees P | I,)] that corresponds with the vector of prediction

errors  given by g&,,(x,,|1) =[5k,+1,z(yk‘+1,z|It)a---sgk,+k2,:(yk,+k2,;‘It)] where

&, 1 1)=y,,—P(¥;,|1,), and the covariance matrix of ¢,, is Q(x,,|/,). Hence,
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the definition of non-causality is the vector x;, does not cause x,, if

Qx,, | 1) = Qx,, | 1, \{x,,| s<t}) (1.36)
where I, \{x,,| s<#} denotes the information set available at time # containing only the
vector series X, .

Most of the literature on causality tests are based on bivariate models or vecior
autoregressive processes. Newbold (1982) uses a likelihood ratio to test non-causality in
a bivariate ARMA model. Eberts and Stee;e (1984), Newbold and Hotoop (1986) again
consider the Wald, likelihood ratio, and score tests for bivariate models. Tjostheim
(1981) and Hsiao (1982) give a general formulation and non-causality conditions for
trivariate models. Boudjellaba, Dufour, and Roy (1992) derive the necessary and
sufficient conditions for non-causality between two vectors of variables and introduce
Granger causality tests. They develop a causality analysis for general vector processes.

Consider the stationary and invertible k-dimensional VARMA (p, q) process

1,(B)x, =¢,(Ba,, (137
where II(B)=I1-I1,B~..-TI B* and @(B)=I-¢B-..—-¢B'. The a ’s are

uncorrelated random vectors with mean 0 and the non-singular covariance matrix Q.

Assume that the parameters in II(B) and ¢(B)are uniquely defined and the process x, is

partitioned into two vectors x, =(xj,,x;,)', where x,, and x,, are k, and k,dimensional

vectors respectively with &, + k£, =k. Then, x, does not cause x, if and only if
det(I1,(2),@,,(2)) =0, (1.38)

where II,(z) is thefirst , column of TI(z) and @,,(z) is the matrix of @(z) without its
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last %, columns (Boudjellaba, Dufour and Roy, 1992).

More explicitly, we can write (1.37) as
(H“(B) HIZ(B)](x"J:(%(B) rpu(B))(a"] (1.39)
I, (B) II,(B)/\ x, ?:(B)  9,,(B) )\ a,,
Boudjellaba, Dufour and Roy (1992) prove that if the stationary VARMA process is

invertible with det( ¢,(z) )#0 for all zeC such that

|z} < 1, then (1.38) states that x, does not cause x, if and only if

Hzx(z)_¢21(Z)q’u(z)_lnu(z) =0. (1.40)
Similarly, Liitkepohl (1991) investigates the necessary and sufficient rules for
non-causality between two groups of stationary time series variables. Consider the non-

stationary aggregate series x, with the MA representation

P {%(3) ‘Pu(B)}a, (L41)
Xos W, (B) Y,(B)

where x,,;i=1,2 are k;x1, i=1,2 vector, a, is a k-dimensional normal white noise

vector with mean 0 and a covariance matrix Q, and ¥;(B) = Z‘I’MBc; i,j=1,2. Then,

£=0)

x, does not cause x, iff ¥,,(B)=0. Similarly, x, does not cause x, iff ¥, (B)=0.

1.5.1 Testing Causality
In 1969 and 1980, Granger defines causality in terms of predictability and

discusses methods to test it. Later, Sims (1972) proves that non-causality from x; to x,

is equivalent to the hypothesis that the regression coefficients of future x, are zero in the
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regression of x, in future, present and past x,. Following Sims’ method, many writers

offered different causality tests; for example, Mehra (1978) and Sims (1975). However,
the most commonly used Granger causality tests is the Wald test and the Likelihood
Ratio (LR) test. In 1982, Geweke developed a measure of linear causality between two
variables by using the linear projection of variables. He also solved the inference

problem of these measures by using non-central chi-square distribution.

1.5.1.1 Wald and Likelihood Ratio Tests for Testing Non-Causality

Given a series of n observations x=(x;,x;)", we will consider the following

hypothesis on causality:

Ho: x, does not cause x,
Ha: x, causes x,.

To perform a Likelihood Ratio test, we first construct a multivariate VARMA model by

letting & be the vector of all AR and MA parameters and 8, be the wx1 vector of

constraints on ¢ . Denote the restrictions as

R,(8)=0, =12,..K

where K <w. We will then use the following test statistics:

Wald statistic:

A A A A -1 A ‘
Ew =nRG) [T Y VE)TE) | R(G)~ 1 asymptotically,  (1.42)

where 31 is the maximum likelihood estimate of &, R(J)) -—-(R1 (0))s.- Ry (51))' , T(Sl)

is a matrix of derivatives of R(J,) at 3’1 , and V( 5‘1) is the asymptotic covariance matrix
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of \/r;(ﬁl ~0,). The Wald test is easy to apply because it only uses the maximum

likelihood estimators of the constrained parameters of the full model and does not require
the estimation of unconstrained parameters.

Likelihood Ratio statistic:

€ = 2(L(3 ,X) - L(JA*,x)) ~y% asymptotically, (1.43)
where L(8, x) is the logarithm of the likelihood, 8" is the MLE of & under constraints
R,(5)), and & is the unconstraint MLE.

Both &, and £, are asymptotically equivalent and follow y; distribution where

K is the number of restrictions under the null hypothesis of non-causality (Basawa,

Billard, Srinivasan, 1984).

1.5.1.2. Testing Causality in Cointegrated Systems

Testing for Granger non-causality in cointegrated time series has been the subject
of considerable recent research. The first result that naturally emerges from this subject
is the existence of ‘long-run’ causality in at least one direction (Granger, 1988), whereas
cointegration is represented by a bivariate error—correction model. The extension of this
result to more than two variables is fairly straightforward under the existence of one
cointegrating relation. In fact, the two-step procedure introduced by Engle and Granger
(1987) was all that was needed to test non-causality hypotheses. In empirical literature
the Wald test computes from an unrestricted vector autoregressive (VAR) model that
appears frequently. Mosconi and Giannini (1992) suggest a likelihood ratio test that uses

ECM.
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Given a non-stationary, k-dimensional, cointegrated /(1) series x, that follows a

vector autoregressive VAR(p) process:
4,(B)x, =a, (1.44)
where ¢,(B)=1-¢B~-...—¢,B" and a,’s are i.i.d. k-dimensional normal random vectors

with mean 0 and the variance-covariance matrix Q such that A'x, is I(0) and rank(4) =

h. The error correction model of (1.44) can be written as
p-1
Ax,= ) TAx,, +1Ix, , + E, (1.45)
i=1

where I'; = -1 +¢ +--+4,, i=1,..p-1, [I=—¢,(1) =y A" for some y .

Let’s partition x, as x, =(x,;,x;,) where k=k,+k, . Equations (1.44) and (1.45)

are given by
$n®) $,.®)]
$,2(B) ¢,,B)| "
and

& r, T n, o
il i12
Ax, =Z[F - ]M,_i+[nll le}xt_p +E,.
i=l 2} i,22 21 22
The MA representation is then given by
(1-B)x, =¥(B)a,

¥,(B) ¥,(B)

where Y(B)=I+¥,B+¥.,B*+...=
(B)-1+¥B+¥, [q,m o e

}. So, x,, does not cause x,,

if ¥,,(B)=0. This means that ¢,,,(B)=0 which implies I';;, =0 and I1;, =0 . In
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this framework, x,, does not cause x,, if the hypothesis

H:UTV =0, UTIU, =0

bolds where U=[0;,, L] . T=[r - 1,,], ¥v=1,,0U, , and

U, = [I 1;, O;c—k] K, ]'kxk] .
Mosconi and Giannini (1992) prove in their Theorem 1 that given any reduced
rank matrix, II=yA’, U'TIU, is equal to zero matrix iff
y=[Uyr, 17,] and A=[4, [UA,] (1.46)

where y,, is k;xh,, 7, is kxh,, 4 is kxh,,and 4,, is k, xh, with h=h, +h,.

Let’s partition 7, =[{, yﬁz]’ and A, =[A4], Aﬁx]‘ where y,, is k, xh,, 7,, is

k,xh,, A4,,is k,; xh,, and A4,, is k, xh, . This means that

y:[ﬁl 7’12:’ andA=[A“ 0 :l
0 7y Ay Ay
Then,

H=}'A'=[7” 712][141'1 A£1:|=[711A1'1 7’11A£1+712A52:|

0 7pfl 0 4y 0 YA
which means that h, is rank (I1;,) and h, is rank (I1,, ).

The null hypothesis of non-causality in aggregate cointegrated systems,

Hy(hh,,h,) defined by Mosconi and Giannini (1992) then becomes
Hy(hh h,):UTV =0, UNIU, =0, TI=yA",

where y is the full rank kx4 adjustment matrix and 4 is the full rank kxh
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cointegrating matrix and the alternative hypothesis is H,(h): II=yA4"'. By applying the

cointegration restrictions under both the null and the alternative hypotheses, the more

efficient test can be obtained.

Under the null hypothesis H,(h,h,,h,), the equation (1.45) can be rewritten as

-1
AX, = Y TAx,  +(U, 7,4+ 7,AR0)%,, +e, . (147)
i=1

If we let z, =Ax,, z":(Ax;_l,...,Ax,’_pH) > Ty =X, , and I’=(I‘l,...,I’p_1). The
equation (1.47) then becomes

Zoe =Tz, + (U, 3, A + 72A;2U')zpt te,, (1.48)

where UTV =0.
Mosconi and Giannini (1992) suggest an iterative algorithm to find the estimates

and the maximized likelihood under the null hypothesis of non-causality. If we define

~

P A fzj,;lzz,i,f’,. and fzi , the ith step estimates the corresponding parameters. Given
2’711,,-’1&1,: and I, , the ith step estimates for 772,,.,/:122’,. and Q. are obtained. Finally, given

¥, and ;122,,., the (i+1)th step estimates of y,,,4, andI" are derived. The convergence

criterion can be expressed in increments of the log-likelihood. If the maximized

likelihood after convergence is denoted by Hr(rhxehxlxhz)L[l“,H;xl,- . -,xn] , then the likelihood

¢

ratio test is given by

L[I‘,I‘I;xl,---,xn]

max
__2 ln Ho(hﬂhl ’hZ)

%L[I’,H;xl,---,xn]

(1.49)
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where rgxz(% LT, IL;x,, -, x,] is the maximized likelihood function in equation (1.31)
obtained by Johansen (1988). Based on Johansen’s results, Mosconi and Giannini (1992)
indicate that it is asymptotically distributed as Chi-squared, and they compute the degrees
of freedom to be kh—kh —k,h, —hh, when p=1 and kh—kh —k,h, —hh, +kk,(p-1)

when p>1.

1.6 Representation of Multiplicative Vector Autoregressive Moving Average
Processes

Many business and economic time series have a seasonal behavior. By seasonal
behavior it is meant that the recurrence of some recognizable pattern after some regular
interval is called the seasonal period and denoted by s. Some applied researchers prefer
to use officially adjusted time series; however, many studies emphasize the importance of
using unadjusted time series. Sims (1974), Wallis (1974), and Ghysels (1988) especially
claimed that the official seasonal adjustment results in biases in the estimated dynamic
relationships and provides a weak relationship between seasonally adjusted series of
production, sales, and inventories. Moreover, Raynauld and Simonato (1993) claim that
there is a loss of degrees of freedom coming from the seasonal adjustment process when
a model with an officially adjusted series is estimated. Hence, a model for unadjusted
seasonal series is called for, and the best way to present this seasonal behavior
mathematically is by using multiplicative models. Although a non-multiplicative
representation can also be used, it is less efficient because it normally involves an

estimation of a larger number of parameters.
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For a univariate seasonal time series x,, the multiplicative autoregressive and
moving average model have been found to be very useful in describing the seasonal time
series

9,(B)0,(B*)x, =6, +6,(B)0,(B%)a,, (1.50)
where B is the back shift operator, Bx, =x, ,,
$,(B)=1-¢B—---—¢,B",
®,(B)=1-®,B° ~---—D,B”,
6,(B8)=1-6B~---6 B,
0,(B’)=1-0,B’ —---~0,B~,
and g, is the Gaussian white noise process with mean 0 and constant variance &~. The
model is often denoted as ARMA(p,q)x (P,Q),, whereas s is the seasonal period. For

our study, we will denote the model as ARMA(p)(P),(¢)(Q),. When the x, is an k-

dimensional vector, the natural extension is the following multiplicative vector

autoregressive and moving average model
$,(B)®,(B*)x, =6, +6,(B)0,(B)a,, (1.51)
where
4,(B)=1-¢B——4,B",
©,(B)=1-0B —-—-®,B",
0,(B)=1-6B~---6 B,

and
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0,(B’)=1-0,B —-—0,B%,

I is the kx k identity matrix, ¢, @, 6,, ©, are kxk coefficient matrices, and 4, is the

vector Gaussian white noise process with mean vector 0 and the constant variance-

covariance matrix Q. This vector model will be denoted as VARMA(p)(P),(q)(Q),.

When p = 0 and P = 0, the model is referred to as a multiplicative vector moving average

model of order q and Q with a seasonal period s, and it is shortened to VMA(g)(Q), -

When q = 0 and Q = 0, the model is referred to as a multiplicative vector autoregressive

model of order p and P with a seasonal period s, and is shortened to VAR(p)(P),. We

and

also assume that the zeroes of the determinantal polynomials '¢p(B)<I)P(Bs)

|0q (B)®,(B*)| are all outside the unit circle.

Because of the commutative nature of scalars, for a univariate time series, model
(1.50) can also be written as
®,(B%)¢,(B)x, =6, +©,(B*)f,(B)a,. (1.52)
Can this operation be extended to the vector process given in model (1.51)? This
problem arises in the literature and yet, surprisingly, no one has ever paid any attention to
this issue. For example, in studying the likelihood function for a multiplicative VARMA
model, Hillmer and Tiao (1979) write a multiplicative vector moving average

VMA(g)(Q), model as
x, =6,(B)@y(B*)a,. (1.53)

On the other hand, in studying the algorithm of the exact likelthood for a vector process,

Ansley (1979) uses the following representation
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x, =0, (B4, (B)a,, (1.54)

which can be denoted as VMA(Q),(q) . Is VMA(g)(Q), the same as VMA(Q),(q)? More

precisely, can both models (1.53) and (1.54) be used to describe the same vector time
series? In the literature, studies on representation of multiplicative VARMA processes

are nonexistent. Therefore, this research aims to fill such a gap.
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CHAPTER 2

TEMPORAL AGGREGATION OF MULTIVARITE AUTOREGRESSIVE
MOVING AVERAGE PROCESSES

2.1 Introduction

The time series data used are typically sums or averages of data that is frequently
more generated than the reporting interval. Obviously, averaging smoothes the data, but
this changes the time series properties at all frequencies. Most of the theoretical literature
has focused on the univariate autoregressive (AR) processes or autoregressive integréted
moving average (ARIMA) processes for example, Brewer (1973), Wei (1981), and Weiss
(1984). Temporal aggregation of multivariate processes is clearly more interesting
because many properties of interest such as causality and cointegration can only be
studied through multivariate processes.

In this chapter we will analyze some properties of vector time series under
temporal aggregation and derive some vector ARIMA models for temporal aggregates,

which we will need in the later chapters.

2.2 Derivation of Some Vector Autoregressive Moving Average Processes for
Temporal Aggregates

Proposition 2.1 Let x, be a zero mean basic vector time series following a

VMAC(1) process:

X

=@

~0a,_,, 2.1

t
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where @, vector is a sequence of ii.d. random variables with mean vector 0 and the

covariance matrix Q. Then the aggregate time series defined by X, =(1+B+.+B" ") .
will follow a VMA(1) process
X,=E,-©OF,, 2.2)
where E, is a sequence of ii.d. random variables with mean vector 0 zero, the
covariance matrix Q, the moving average parameter @, and the covariance matrix Qg
are determined as follows:
(i) ifm=1, then
©=0 and Q,=Q.
(i) If m > 1, then ® will be the solution of the following quadratic matrix
equation
er,+er,+I, =0,
where T, = Var(X,) and T, = Cov(X,,X,,,), and
Q. =-T,©@)".
Proof:
(i) If m=1, then X, =x, . Consequently,
0=0 and Q. =Q. 2.3)
(i) Ifm> 1, by multiplying (1+ B+...+ B"")on both sides of (2.1) we obtain
(14B+..4B™")x, = (1+B+..+B™")(a, — 0a,_, ) = (1+B+..+B™') (I - 6B)a, .
By changing ¢ to mT

X, =(1+B+..+B™")YI -6B)a,,,
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we obtain
I, = Var(X,) = Var((1+B+..+B™' I - 6B)a,,,)
=Var(Z+(I -8)B+...+(I -8)B"' -0B™)a, ).
Hence,
I'y=Q+(m-HI-HQ1-6) +6Q0". 24
Next,

I =Cov(X;, X;,) =E(X; X1.,))

=E {((1+B+..,+B“” YI -6B)a,, )((1+B+.+B™'YI - 6B)a,,, ) }
Hence,
r,=—-Qf. (2.5)

Also,

I, =Cov(X,,X;,,)=0,5>1.

Thus, {X,} is a vector MA(1) process. For the VMA(1) process it is known that

I'y=0Q,+06Q,0, (2.6)
and

I=-Q,0. 27

By using this information, the parameter ® and covariance matrix Q, can be obtained
as a quadratic matrix equation on ®

@, +Or,+T =0, (2.8)
where I'; and I', are given in (2.4) and (2.5), respectively. After obtaining the parameter

matrix @, we can use (2.7) to find Q as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



41
Q, =-T,©)". @.9)

These results show that if the basic time series follows the VMA(1) process, then the
aggregate time series also follows this process, but with different parameters.

Propeosition 2.2 Let x, be a zero mean basic time series following a stationary
VAR(1) process:
x,—¢x,,=a,, (2.10)
where the a, vector is a sequence of i.i.d. random variables with mean vector @ and the
covariance matrix Q. Then the aggregate time series defined by X, =(1+B+..+B™")x_,
will follow a VARMA (1,1) process
X,-®X, , =E, -OF, 2.11)
where the E, vector is a sequence of i.i.d. random variables with mean vector 0 and the
covariance matrix €2, . The autoregressive parameter @, the moving average parameter
@, and the covariance matrix Q, are determined as follows:
(i) Ifm=1, then
D=¢,0=0and Q. =Q.
(i) Hm>1,then
® =4,
and © will be the solution of the following quadratic matrix equation
@, +Or,+I =0,
where I'y = Var(W,,;) and ', =Cov(W .. W11 ) » Wor =(I —®PB)X ., and

Q, =-T,@)".
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Proof :

(@ Ifm=1, then X, =x,. Consequently,
D=¢,0=0 and Q,=Q. (2.12)

(ii) If m > 1, by multiplying (1+B+..+B™ )(I —¢"B™)Y(I —¢B)"' on both sides of

(2.10), we will obtain
(14B+..+B" ) —¢"B™)x, = (1+B+..+B™ Y1 - ¢"B™)(I -¢B) 'a,.
By changing ¢ to m7T and letting
W, , =(1+B+.+B"YI-¢"B™)x,, = (I -¢"B)X, =(I -®B)X,

where ® =¢", we note that

W, =(1+B+ AB™YI - ¢"B"XI -¢B) a,,
=(1+B+..+B™' (I +¢B+..+¢" 'B™)a,,

[sish-EiE -

Jj=0 i=0 J=1
Therefore, the variance of W, is obtained as

Ty =Var(W,,, Z[Z¢HZ¢]+Z¢'("§’¢'] [mfﬂw 2.13)

.’—0 = l

The autocovariance matrix is then obtained as

I, =Cov(W,,,, Y=EW, W rim)>

mT+m
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{{[Z[Zﬁ )B S (Z ; )B } }
.

Hence,
r, =Z[Z¢HZ¢J (#) . (2.14)
and
Iy =CoviW,.r . Worims) =0,s>1.

Thus, {WmT} ={(I-®B)X,} is a vector MA(1) process. As a result, @ is the solution
of the following quadratic matrix equation
@I, +Or,+I =0, (2.15)

where I'j and I', are given in (2.13) and (2.14), respectively. After obtaining the
moving average parameter matrix ®, Q is given as

Q. =-T,(@)". (2.16)
These results show that if the basic time series follows a VAR(1) process

X, —¢x, , =a,, 2.17)

the aggregate series will follow a VARMA(1,1) model.

Proposition 2.3 Let x, be a zero mean basic time series following a

VARMA(0,1,1) process:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



44
(1-B)x, =(I+¥ Ba,, (2.18)

where a, is a sequence of random variables with mean vector 0 and the covariance
matrix Q. Then the aggregate time series defined by X, =(1+B+..+B™')x_, will follow
a VARMA (0,1,1) process
(1-B)X, =(I-©B)E,, (2.19)
where E, is a sequence of random variables with mean vector 0 and the covariance
matrix Q, . The moving average parameter ® and the covariance matrix Q, are
determined as
i) If m=1, then
O=-%, and QO =Q.
(i) If m > 1, then ® will be the solution of the following quadratic matrix
equation
@I, +Or,+I; =0,
where I', = Var(AX,), T} =.Cov(AXT,AXT+|), AX;=(1-B)X,,and Q,=-T,(©)".
Proof:
(i) If m =1, then X; = x,. Consequently,
O=-¥ and Q, =Q. (2.20)
(ii) If m >1, by multiplying (1+ B+...+ B"')(1—B™)on both sides of (2.18) we
will obtain
(1+B+..+B™)(1-B™)(1-B)x, = (14B+..+B™")(1-B™){ + ¥,B)a, .

Then,
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(1+B+..+B™')(1-B™)
(1-B)

(14B+..+B"")(1-B")x, = (I +¥,B)a, .

Changing ¢ to mT and letting AX, = (1+B+..+B™")(1-B" ), =(1-B)X, ,
AX, =(14B+..+B™Y’ (I +¥ Ba,,.

Ultimately, we have
m-1 m
AX, = l:Z (G+DI, +i¥)B' + Z ((m-)I, +(m-i+1)¥,)B™™! :la,ﬂ , 2.2
i=0 i=1

and so, therefore,
I’y = Var(AX;)

m-1 m
= EKZ (DI +1¥ DD, +iY) '+ Z (m-i),, + (m-i+1)¥,)Q((m-D)I, + (m-i+1)¥P, )H

i=0 i=1

_ m(2r;12+1){ " 2m(m?*-1)

T, Q+¥,Q¥, PQ+Q¥}, (2.22)

and
I’l = COV(AXT;vAXrH) = E(AXTAX;‘H) =

=Q(m-1)+mO¥ + Z((iﬂ)lk +i¥)Q(m-i-DI, + (m-)¥!)+(ml, +(m-1)¥)Q¥/,

i=1

} N m(m-1)(m-2) m(m+1)(m+2)

2
r,=2Deo v 0w PO+ QY.  (2.23)
6

T, = Cov(AXy,AX,,,)=0,5>1.

Thus, {AX,} is a vector MA(1) process. Hence, the aggregate process {X,} is a vector

ARIMA (0,1,1) model
(1-B)X, = E; -®OFE,_,, (2.24)

with E}. having mean vector 0 and the covariance matrix Q.
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To determine ® we note that
I'y =Var(AX;)=Q; +0Q 0,
I', = Cov(AX;,AX;, ) =-Q.0'. (2.25)
Hence, ® will be the solution of the following quadratic matrix equation
@, +Or,+I; =0, (2.26)
where I'y and I'; are computed from (2.22) and (2.23). Once we obtain ®, from (2.25),
we will get Q, =-T',(0")".
Thus, when the process generating mechanism of the basic time series is a
VARMA (0,1,1) model, the model for aggregate data remains the same but with different
parameters. The unit root remains after temporal aggregation; it means that the aggregate

time series is also non-stationary.

Proposition 2.4 Let x, be a zero mean basic time series following a VAR(p)
process:

¢,(B)x, =a,, (2.27)

where ¢, (B) =I-¢B~—---—¢,BP and a, are a sequence of random variables with mean

vector 0 and the covariance matrix Q. Then the aggregate time series defined by

X, =(14B+..+B™ '), , will follow a VARMA (P, Q) process
®,(B)X, =6, (B)E,, (2.28)
where  @®,(B)=I-®B---—®,B? , ©,(B)=I-0B-----0,B?  with

0=(p +1)(1 - m_’) and E, are a sequence of random variables with mean vector 0 and
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the covariance matrix Q.

Proof:

The matrix polynomial ¢,(B) can be written as

4
4,(B)=1-¢B——¢,B* =] [(1-5B) (2.29)

i=1
for 8, s satisfying
p_p-l

. p-1 p-1 —1 . )
b= S S S saa 7 =) D[]8, =11 and

i=l =i+l d=ip ] j=1 t=1

P
¢, =(-1)° I_I6 . because
A

p-1 p-i

f[ I1-6B)= Z&B+ZZ§5.B2+---+

i=1 i,=i+l

+(- 1)"‘22 2 8,8, 8, B +(- 1)”1_[513"

=1 L=h+1 i, =i, ,+1

Then, equation (2.28) can be written as

[ -8B}, =a,. (2.30)

When we multiply both sides of equation (2.30) by

ﬁﬁﬂ( 1-6"B™)(1 ~5B) ",

i= (1 - B)

we get

]i[ ((11—-]?:)) (I -6"B"™ )(I - 5,~B)_1 (I - §‘.B) X, = Ij ((11_—?:)) (I _&"B™ )(I _ é.iB)—x a,
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that is,

lil%}%)(l_‘s‘mBm)x’ =ﬁ%"ﬁ)l(, -5rB")(I-8B) a,. (231)

i=1
By changing ¢ to mT,

ﬁ ((11__]:)) (1-8"B")x,r = IL[(E—I_:?%)(I ~6"B")(I-5B) " a,,. (232)

i=1

i=1

(1-m)

Since X, = x,,r , we will rewrite equation (2.32) as

(i-B)
Ij(’ ~5"B") X, =f[(21—_}3]:))(1—5,.'"B"')(I—5,.B)_’ s
®,(B)X, = IL[———(E;Z')) (1-6B")(1-6B) " a,;, (2.33)

where ®,(B)= ILI(I—J;"B) =I1-®B----—® B”. When we look at the right side of
-1
equation (2.33), we can see the order of the MA parameters. So,
Q=(m-1+ p(m-1))/m=(p+ 1)(1 —m™ ) . Therefore, equation (2.33) is given by
®,(B)X, =0,E, (2.34)
where @, (B)=I-®B—--~®,B", ®,(B)=1-6,B---—0,B’
with O =( p+1)(1—m_1). In equation (2.34), all the parameters are functions of ¢,’s

and Q.
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CHAPTER 3

THE EFFECT OF TEMPORAL AGGREGATION ON COINTEGRATION

3.1 Introduction

The main idea of this chapter is to develop a new test statistic and its limiting
distribution for cointegration under temporal aggregation. We will also demonstrate that
cointegration in the system is not affected by aggregation. What is more, we obtain the
vector error correction representation of an aggregated series for the vector
autoregressive process of order 1. Then, based on this representation and following the
work of Johansen (1988), we will develop a new test statistic and its limiting distribution

to test cointegration in an aggregated model.

3.2 Temporal Aggregation of a Cointegration System

A k-dimensional vector time series x, is said to be cointegrated of order d, b,
denoted as x, ~ CI(d,b), if all the components of x, are I(d), and a linear combination

of these component is I(d-b), b>0. When d and b values are d=1 and b=1 for a

cointegrated system, their linear combination is I(0), which is a stationary process. If

there are more than two components in x,, then there may be more than one linearly

independent cointegrating vectors. In this case, we let {3’: =la, a, - a,,]' which is

a hxk cointegrating matrix composed of /4 linearly independent cointegrating vectors,

and A'x, is stationary.
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A time series variable can be a flow variable or a stock variable. A series of a

flow variable is often obtained through aggregation over equal time intervals such as

m-1 «
partial sums, that is, X ={X,}" = {Z me_,} . A series of a stock variable is often
T-0

i=0
obtained by systematic sampling such that only the m™ elements of the original process
are observed, that is, X ={X;} ={x,;}, . It is natural to study the effect of

aggregation for these flow and stock variables.

Marcellino (1999) proves that for a stock variable, when basic series are
cointegrated, its temporal aggregates are also cointegrated. We prove in the following
Theorem 3.1 that this result also holds true for a flow variable.

Theorem 3.1: Let x, be a k dimensional vector series that is integrated with
order 1, i.e. I(1), and the process is cointegrated with a cointegrating matrix 4 of rank 4,
ie. A'x, is 0). Then, the aggregate series X, is also integrated with order 1.
Furthermore, A'X, is also 1(0).
Proof:
Since x, is I(1), by deﬁnition;

Ax, =¥(B)a, @.1
is I(0), where W(B)=) " ¥;B’ such that Zj=0|‘11,{<oo, and ¥(1)#0. The Wold

representation of the aggregate series can be found by multiplying both sides of (3.1) by

(1+ B+...+ B")(1- B")/(1- B)
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1+B+..+B™")}(1-B™)
1-B

(1+B+..+B™)(1-B" )x, = ¢ ¥(B)a,. (3.2)

By changing t in (3.2) to mT

(1+B+..4B™)(1-B™ ), , = (1+B+..+B™Y¥(B)a,,, .

-1 m-1
(1-B) X, =(Z(i+1)1k}3" +Y " (mei-1) IkB”‘“)(I+‘~PlB+‘P2B2 +oYa,  (3.3)
i=0 i=0

The Wold representation of the aggregate series is then obtained as

(I-B)X, =y(B)E, 34)
where w(B)E, =Z|//,.ET_,. . Note that the y, is absolutely summable since the'¥'; is
=0

absolutely summable and y, is a finite linear combination of the ¥, . Moreover,

m-1 m-1
w(1)#0, since (Z(iﬁrl)lkBi +Z(m—i—l) I,CB""“")(I+‘I‘1B+‘I’2B2 +) does mnot
pary pary

equal 0 at B=1. Hence, (1-B)X, is /(0), and X, is I(1).

Now A'x, is I(0), hence it can be written in a form, A'x, = ZTia,, where A'x,
=0

is stationary and Y = Z Y; #0. For the aggregates, we note that

=0

AX, = A(1+B++B")x,, = A, + A'%,p  +-+ A'x

mr-m+1 -

(3.5)

Clearly A'X, is I(0) since it is a finite sum of 1(0).

QE.D.
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Given a k-dimensional cointegrated /(1) series x, that follows a vector

autoregressive VAR(p) process:

$,(B)x, =a,. (3.6)
where ¢,(B)=I-¢B—..-¢,B* and ¢, ’s are kxk matrices, a, ’s are iid. k
dimensional random vectors with mean 0 and variance-covariance matrix Q. Since

(1-B)x, is I(0), we can write its Wold representation as

(-B)x, =¥,(B)a,, 3.7)

BT
gp(Bﬂ . Assume that A'x, is I(0) and rank(4) = h. By Granger

where ¥, (B) =[

representation theorem given in Chapter 1, its error correction model (ECM) is given by

-l
Ax, =) T,Ax, , +1Ix,_, +a,, (3.8)

i
where I', =—I+¢ +---+¢,,i=1..,p-1, II= ¢,(H= —y A" where A, the cointegrating
matrix, and y the adjustment coefficients, are kx /# matrices. As introduced in Chapter 1,
the most commonly used cointegration test is the test due to Johansen (1988, 1991) and
Johansen and Juselius (1990) to test the hypothesis H,:Rank(IT)=h versus the
alternative greater than h, where h <k. Since I1=yA', this is equivalent to test that A
and ¥ are of full column rank 4, the number of independent cointegrating vectors that

forms the matrix 4. The test based on the likelihood ratio leads to the test statistic

which is the trace of a diagonal matrix of generalized eigenvalues from I1, i.c.,
k A~
“2InA=-n ) In(l-k,), (3.9)
i=h+l

where /{, denote the eigenvalues such that ):, >..> }:k >0. If the test statistic is greater
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than the critical value for rank %, then the null hypothesis that the cointegration rank

equal to 4 is rejected.
The statistic —2In A has the following limiting distribution which can be

expressed in terms of a (k — k) — dimensional Brownian motion ¥ as
1

tr i[[(dy)lf'][ljyy'dt]1 ﬂy(dy)'} : (3.10)

0

Table 3.1 presents the percentiles of the asymptotic distribution for the trace obtained
through a simulation and are tabulated in Johansen (1988).

Table 3.1 The Critical Values of the Trace Test

h 2.5% 5% 10% 50% 90% 95% 97.5%
1 0.0 0.0 0.0 0.6 2.9 4.2 53

2 1.6 1.9 2.5 54 10.3 12.0 13.9
3 7.0 7.8 8.8 14.0 21.2 23.8 26.1
4 16.0 17.4 19.2 263 35.6 38.6 41.2
5 283 304 328 42.1 53.6 572 60.3

Let XT:(1+B+...+B’“")xm,. . Since (l—B)x, is K0), by Theorem 3.1,

(1-B) X, is also K(0). Thus,
(1-B)X, =¥(B)E, = X ¥,Ey_,, 3.11)
i=0

where ZI‘P,[ <o and W(1)#0, and can be obtained through the relationship

¥(B)E, =(1+B+---+B"") {%]— a,, (3.12)

using the method introduced in Chapter 2.
Following the Granger Representation Theorem ii) given in Chapter 1, we have
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®,(B)X, =0,(B)E, (3.13)
where
@,(B) = adj(¥(B))/(1-B)"”
=1-®B-..—®,B°
and  0,(B)=det(¥(B))/(1-B)"=1-8,B—...-0,,B° .

In addition, since the cointegrating matrix 4 remains unchanged as shown in Theorem
3.1, using the Granger Representation Theorem #v), we obtain the following error

correction model for the aggregates

P-1
AXy =) mAXy, +T1,c Xy, + Oy (B)E,, (3.14)
i=1

where 7, =-I1+®, +---+®,, i=1,...,P-1, 1, =—®p(1)=aA forsome a.

Example 3.1 Consider the following cointegrated VAR(1) process:

(I-¢B)x, =[ 8 O]x, =a,, (3.15)
04B 1

1.0 0.5]

where a, is white noise with mean vector 0 and the covariance matrix Q = [0 5 10

It can be easily shown that the system is cointegrated with the cointegrating rank of

h=1. By (3.7), we can also write (3.15) as

-§

1 0
(I-B)x, =| 0.4B 1| e
1-B 1-B

which is equal to
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1-Bx, =(I+¥,B —10+0 OB
(‘)xt—(+ 1)“t*' 0 1 04 -1 a,,

0

0
where ¥, = . Following the Granger representation theorem iv) and equation
' o4

(3.8), the ECM of equation (3.15) can be obtained as
Ax, =1Ix,_, +a,
or
Ax, =yA'x,  +a,
where a cointegrating vector, 4'=[-0.4 1] and »'=[0 —l]’. By Proposition 2.3, the
aggregate series has the following form
(1-B)X,=(I-©B)E,, (3.16)

where E, is a sequence of random variables with mean vector 0 and the covariance

0, 6
matrix Q. If m > 1, then ©, =[ " '2] will be the solution of the following

21 22
quadratic matrix equation
@I, +0I,+I =0,

where

2 2.
r,=| Mo Yeo | mOmD o g gy, 200D o 6L owny,
Y210 Y220 3 3

2_ - - + +
Yoa Yo 6 6 6

This means that ©, can be calculated by the following nonlinear equations.
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®121?/ m t 0,,0,7 T 0RO +0,)75, +017110+OpYie + 1 =0

9121712,1 + ®12®21712,1 +0,0,+0,, )722,1 +0,,7),0 + ®12722,o +¥or = 0
0,(0,,+0,)y nt ®§2721,1 + ®12®21}V21,1 +0,7 ot ®22712,0 Vo = 0

0,,(0,,+0,)y, 122+ @izy Lt Il @12@21722,1 +0, %150t O,y 20tV = 0.

We used Mathcad software to solve this problem by using Levenberg-Marquardt
method. This is a quasi-Newton method. At each step, Mathcad estimates the first
partial derivatives of the errors with respect to the variables to be solved to create a
Jacobian matrix. Ordinarily, Mathcad can determine the next estimate to make by

computing the Gauss-Newton step for each variable.

Once we obtain ©,, we will get Q, =-T,(@)).

- _ ] —0.189 -0.074
For m = 3, we obtain the moving average parameter matrix as @, = 0476  0.971

18.09 7.84

and covariance matrix of aggregates is Q = ( 784 5.66

] . It follows that

1+0.189B  0.074B
(- T.{ }T, (3.17)

0476B 1-0.971B

1+0.189B  0.074B

where ©,(B)=1-0 B=
0.476B 1-0.971B

]. From Equation (3.13), we have

det(®,(B))/(1- B) = (1+0.218B) =6(B),

and

_ 1-0971B  -0.074B
®,(B) = 4dj(©,(B)) =( )

-04768B 1+0.1898B
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where the cointegrating rank of #=1. The aggregate series will then have the following

representation:

®,(B)X; =©,(B)E;
where ©,(B)=06(B)/, . Hence by Equation (3.13) the VARMA representation of (3.17)
is

1-0971B -0.074B
-0.4768B 1+0.189B

]XT =(1+0.218B)E;.. (3.18)
From Equation (3.14), the error correction representation of the equation in (3.18) is
given by

AX; =11, X, , +OB)E,, (3-19)

-0.079 0.074

where I1 ,; = -®, (1) =[ 0476 -1.189

) =aA', and O(B)=(1+0.218B).
Note that A4 =[—0.4 1] , we can obtain the adjustment vector as

a=[0.074 -1.189].
Table 3.2 presents the error correction model parameters for an aggregated series
for different aggregation periods. This table indicates that only the cointegration vector

remains the same after aggregation and the VAR(1) process turns out to be a

VARMAC(1,1) process.
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Table 3.2 The 2-dimensional ECM Parameter Estimates from an Aggregated Series

Adjustment | Cointegrating Error Variance
m Vector Vector (4 Matrix
1 0 —0.4] 0 1.0 05
[—1} 1 (0.5 1.0)
3 0.074 [-0.4] 0.218 18.00 7.84
[—1.189} 1 (7.84 5.66)
4 [ 0.119 | [—0.4 ] 0.236 4158 17.64
| —1.190 | 1 (17.64 1050)
6 [ 0213 0.4 0.252 (136.99 56.90)
~1.167 1 56.90 28.16
3 " 0.308 | (0.4 0.259 32091 132.00
| —1.135 1 (132.00 60.35J
10 0404 | 0.4 0.260 624.48 255.28
[—1.099 1] (255.28 111.95)
12 0.500 | (—0.4 0.261 1077. 4385
[—1.062_ |1 (438.5 187.61)

Example 3.2 Consider the following 3-dimensional cointegrated VAR(1) process:

0 04 0
x,—-0 1 0|x,  =a,, (3.20)
0 08 0
where a, is white noise with mean vector 0 and the covariance matrix
3 01 1
Q=101 15 04}.
1 04 2

This system is cointegrated with the cointegration rank of 2 = 2. (3.20) can also

be written as
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1/(1-B) -0.4B/(1-B) 0
(1-B)] 0 1 0 |x,=a,.
0 -0.8B/(1-B) 1/(1-B)

The Wold representation can then be obtained as

1-B 04B 0
(I-B)x,=| 0 1 0 |a,,
0 08B (1-B)

which is equal to

10 0][1 04 0
(1-Bx, =(I+©,B)a,={|0 1 0|+|0 0 0|B}a,, (3.21)
00 1/]0 08 -1

-1 04 0
where ®, =| 0 0 0. Following the Granger representation theorem iv) and
0 08 -1

Equation (3.8), the ECM of equation (3.20) can be obtained as

Ax, =y A'x, | +a,

1 0 -1 0
where y =| 0 0] and the cointegrating matrix A ={ 0.4 0.8 .
0 1 0 -1

By Proposition 2.3, the aggregate series has the following form
(1-B)X; = E; —-©,E; |, (3.22)
where E, is a sequence of random variables with mean vector 0 and the covariance
matrix Qg. If m > 1, then ©, will be the solution of the following quadratic matrix

equation
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O, +O,+T, =0,

where
2, 2_
I, = w{g_,_\p]gql;}+_2_m(_m_ll{\ylg+glp;} ,
2 -1)(m- +1)(m+
r, - oD (Q+¥,Q¥}+ mm-1)m-2) g, ¢, EFDD) .
Once we obtain @,, we will get Q, =-T(®))”.
The aggregate series will then have the following representation:
®,(B)X, = ®Q(B)ET
where ®,(B)=adj(®,B))=1-0B and

0,(B) =det(©,(B))=1-6B.

From equation (3.14), the error correction representation of the equation in (3.20)
is given by

AX, =94'X, +E,-OFE,_|, (3.23)

where ® =0/, .

Table 3.3 presents the error correction model parameters for an aggregated series
for different aggregation periods. This table indicates that only the cointegration vector
remains the same after aggregation and the VAR(1) process turns out to be a

VARMAC(1,1) process. Temporal aggregation clearly changes the error correction

representation of the basic model.
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Table 3.3 The 3-dimensional ECM Parameter Estimates from an Aggregated Series

Adjustment Cointegrating Error Variance
m Matrix Matrix e Matrix
10 (-1 0 ] 3 01 1
00 04 0.8 0.1 1.5 04
1 0 1 |0 -1 0 1 04 2
1.176 —0.033 (-1 0] 6519 1995 2.16
-0.47 —0.083 04 08 1.995 8.698 1.2
2 0 1.15 |0 1] 0.15 (216 12 4
1.25 -0.0733 (-1 0] 11331 7.675 3.45
0.147 —0.186 04 08 7675 2673 24
3 0  1.1915 U 0.1915 345 24 6
1343 —-0.163] (-1 0] 2866 39.63 6.6
0.324 —0.408 04 038 39.63 11721 6.0
5 0 1.214 0 -1 0.214 \ 66 60 100
[1.383 —0.206] (-1 0] 4269 698 89
0413 —0.521 04 0.8 69.8 200.84 84
6 0 1.22 0 -1 0.22 89 89 120

3.3 Effects of Aggregation on the Cointegration Test: An Ilustrative Example

61

To see the effects of aggregation on the cointegration test, consider the following
2-dimensional cointegrated VAR(1) process:

(I-¢B)x, =a, (3.24)

0
where ¢ =[O 4 0} , @, are i.i.d. normal random vectors with mean 0 and the variance-

1.0 05

05 1 O]' It can be easily seen that the system is cointegrated

covariance matrix Q= [
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with the cointegrating rank of # =1 and a cointegrating vector 4'=[-0.4 1]. We first

generate 600 observations from this cointegrated system and obtain its m™ order
aggregates for various m. We then apply Johansen’s trace test for cointegration to these
data sets using the critical values given in Johansen (1988) by using SAS software. The
results are shown in Table 3.4. As m increases beyond 3, except m=12, the test indicates
no cointegration; this contradicts the theoretical result that we have proved in Theorem
3.1. Therefore, the test statistic to test cointegration in the system has to be modified for
aggregate data. In the next section, we will develop this modified test statistic for the

aggregate series.

3.4 The Cointegration Test and Temporal Aggregation
3.4.1. Derivation of the Test Statistic:

Given the error correction model for the aggregates given in equation (3.14), let

ZOT = [AXT ]kxl i ZlT = (AX;—I’ - AX;‘—PH )'k(P—l)xl ? ZI’T = [XT—P ]kxl ?
7= (Mo llp s Vo Orcon =(Oi Ol ), and E =(Er, - Eip,). We
have

Zy,=nZ,+a0A'Z, +E,—OF. (3.25)
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Table 3.4 The Trace Test for Cointegration on a VAR(1) Process for

Various Order m of Aggregation

Ho: Rank | H;: Rank > | Eigenvalue | Trace | Critical Value
m=1
0 0 0.5228 445.28 12.0
1 1 0.0036 2.16 4.2
m=3
0 0 0.5244 151.75 12.0
1 1 0.0192 3.87 4.2
m=4
0 0.5609 126.84 12.0
1 1 0.0278 4.20 4.2
m=6
0.5431 81.89 12.0
1 1 ' 0.0430 4.35 4.2
m=8
0.5388 61.73 12.0
1 1 0.0586 4.46 4.2
m=10
0.5287 49.50 12.0
1 1 0.0831 5.12 4.2
m=12
0 0 0.5256 40.71 12.0
1 1 0.0816 4.17 4.2

We then define the product moment matrices as

N
M, =[N-'Zzi,z;7], G,j=0,1,P), (3.26)
=1
and
N
Ny = [N-‘ZZ,.,E'] ,(=0,1,P), (3.27)
=i kxQk
and
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Ny = [N"EE']Qkak; (3.28)
and define
3, =[M,;-M,M;M,; ] ,Gj=0,P) (3:29)
and
Hy=[Ry-M,M;R, ], .G(=0,P) (3.30)
and finally
Hpp =R -ReMiRie |, - (3.31)

The likelihood function is then obtained as

N 1 N N !
InL(e, 4,0,Q,) c —~—In|Q |- —tr Q"[ z ET]( E E,,} , (3.32)
2 ‘ E‘ 2 " T=1

F=1

InL(e,4,0,Q,) < —E;—lnlﬂsi—
| ) . ] (3.33)
R P

T=1 T=1

For fixed values of @ and A, the maximum likelihood estimation consists of a

regression of Z,, —aA'Z,, +OF on Z,, giving the equations

N N N N
Z ZyZ, = UZ Z,Z + aA'Z ZyZy - GTZ EZ;,
=1 =1

r=1 =1

N
where ZETZ{T =0. By using the product moment matrices, this equation can be
=1

written as

M,, =nM, +aA'M,, —OR
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or

n=M,M; —aA'M, M +OK,_ M, . (3.34)

The log-likelihood function is then given by

mL(a,A,(a,QE)oc—glleE}—

N
%tr {Q;} (Z {(Zor ”MmM;lew ) - aA’(ZPT o MIPMI—IIZIT ) +0 (E - N15'1Ml_1lzw )}JX

T=1

. '
X(Z {(ZOT ""Mli_llZlT ) - aA'(ZPT - MU’MJ_llZlT ) + ®(E - NEIMI_IIZIT )}] :

T=1
Let’s define
Ry = [Zor -MM;,Z,, ]kxk s
Ry = [ZPT _MPIMI—IIZIT :Ikxk:
r_ -1
R, '“[E NEIMnZlT]Qkxk9

and also define S,.j = R,.,.Rf.

[/ 2

write the log-likelihood function as

1nL(a,A,®,QE)oc—§1n|QE|-

: ~ ~ v (3.35)
_-2—1:1'{0;.‘ [Z{RM —aA'R,, +OR, }](Z{RM —aA'R,, +OR, }} .
T=1 T=1
For fixed values of a and 4, the MLE of ®=(®,Ik @Qlk) is calculated as the
following
alnL(ag,@,QE) '—_H”E ——G!A'HpE +®HEE ___0,

O(a, A)=(aA'Hp, —H, ) Hpy .

Now equation (3.32) can be written as
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N

InL(a,4,0,Q, )« —Ni-m|9,,.| —%u{gg (Z{RM —aA'R,, +(aA'H,; —H,, )H;;.RE}J x

F=1

N 7
X(Z{Ror ~aAR,, +(aA'H,, —H(,E)H;ERE}] i

T=1

For a fixed value of A, the MLE of ¢ is calculated as the following

Oln L(ag‘"@’n'f) = S, A+ Hy Hy H A+ G AT A= 20AH p Hyp Hyp A+
o
+aA'H HyH H H,A=0
A o~ -1 ’ =1 !
a(A)= (JopA - HOEHEEHEPA)[A (SPP —HpHpp Hpp )A] : (3.36)

Let’s define Fyp = HyHppH gp and Fpp = Hpp H 7+ H . Then, (3.36) is written as
n v~ —1
@(A) =(3ppA— FopA)[ A (Spr ~Fpp)A] . (3.37)
Equation (3.35) is can then be rewritten as
N
InL(a, 4,0,Q,) < ——2—1n|QE|—
1 -1,
EU{Q ( Ry, — (‘SOPA E)PA)[A (‘sPP PP)A] }A rrt
v -1 1 -
+({( op A= FopA)[A Spp— PP)A:] }AHPE_HOE)HE}ERE:]X

x{(Z[ R, {(JOPA ~Fyp )| A (Spp — Frp )A]“}A’R,,T +

+({(SOPA —E)PA)[A,(SPP - FPP)A]—I}A’HPE _HOE )H;‘}E‘REjI }

For a fixed value of 4, the MLE of Q is calculated as the following
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SinL(x,A,0,Q,) _N
0Q, 2

+H0EH;E;£HEPA[A,(SPP - FPP)ATl A'(SI’O ~Fp, ) - HOEH;EHEO -

_ 1 i~ -~ 1o~ u £ f e
Q) _EQEI {Jw —JoPA[A (S —FPP)A] ‘4 (Sro _FP°)+

| ~(Sop ~ Fyp ) A[ A (Spp ~ Frp) A A'Spy+
(Sop = Fop)A[ A (Spp ~ Fip ) A ASppA[ A(Spp —Fp YA A (Spo — Fio) -
~(Sop ~ Fop) A[ A (Spp ~ Fop) A AHp Hoh H oy Al A'(Spp — Fpp JA] A (Spo — o) +
+(Sop ~ Fop ) A[ A (Spp ~ Fpp ) A AH e HpHop, +
+(Sop ~ Fop)A[ A (Spp ~ Fpp)A] AHpHipHp, -
~(Sop —Fop ) A[ A'(Spp - F,,,,)AT AHpHo Hop Al A (S5 - Fpp )AT A'(Spy— Fpo)+
(3o~ Fop )AL (Spp — Fyp) A] A pe H g H g Hyy H oy AL A' (S0 = Fipp ) A A/ (3o~ Fpo) -
~(Sop ~ Fop ) A[ A (Spp ~ Fpp)A| AHpyHpoH p Hop Hp, —
~Hy HyoH gy + Hop Hys Hop A[ A(Spp — Fpp ) A A(Spy = Fpp) -
~HopHop Hop H Hyp A[ A (Spy — Frp) A A(Spo — Fpo)+
+Ho HoH gy HopH, |

A e 1
QE(A) = (300 - E)o)—[sop - E)P]A(A [‘SPP - FPP]A) A [SPO + Fpo]' (3.38)
where Fy, = H Hp Hy and Fp, = HppHppHg.
The likelihood function now becomes proportional to
a -N/2
Q)

and so, to maximize the likelihood function we have to minimize

min’soo - Foo "[SOP - FOP]A(A'[SPP —FPP ]A)—l A'[SPO - Fpo] >

whereby the minimization is over all kxh matrices 4.

3

l(soo - E)o) _[SOP - ‘FOI’]A(A'[SPP - FPP]A)_] A'[SPO - Fpo]

I- (300 - Foo )_] [Sor —F()P]A(Al[spp - FPP ]A)—l A'[SPO —Fpo]

lsoo _E)ol
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By using Liitkepohl (1991)

lsoo - F;)oi I_A'[SPO - FPO](SOO - Foo )_l[sop - F;)P]A(A'[SPP - Fpp ]A)_I[,

lsoo_Foolx

xl(A'[S,,,, — Fpp JA) = AT S50 = Fpo S0~ Fro) ' [Sor — For ]Al A3 = Fpp 4],
we will minimize

|(A'[s,,,, ~ Fpp J4) = A3y~ Fp (S~ Foo) ' [Sor —For ]A‘ | A3~ Fop 1A,
or

'A' {(3” —Fpp) S0 = Foo (S0~ Foo) ' [Sor — i ]}Al I|A[Spp ~ Frp 14|, (339)

with respect to the matrix 4.

Following Johansen (1995, Lemma A8, p. 224), Equation (3.39) is minimized by

]7“(51’1' - FI’P)_([SPO - FPO](SOO _Foo )—1 [SOP - E)p ]) =0, (3-40)

which leads to the solution related to the ordered eigenvalues 1> A} >..> j,k >0 of

—] .
[SPO - FPOJ(SOO —F;m) [SOP - Fo,,] with respect to (3, —FPP) .
Let T denote the diagonal matrix of ordered eigenvalues and V the matrix of the

corresponding eigenvectors, then
(Ser = Fpp )UT =[S0 = Fpo (S0 = Fuo) [Ser = For IV » (3.41)
where U = (u,,...,u,) is normalized such that
U'(Sp—Fpp)U=1.

Now, we choose A =Ug where £ is kx h matrix, then we minimize
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‘e'U'(SPP — Fp YUs—8U S0 — Fpo (S0 = Fio) ' [Sor — For ]Ug‘/ls’U'(S”, ~ Fpp)Ust],

le's - £'Tel/|e's|.
This can be achieved by choosing £ to be the first & unit vector or by choosing A to be
the first h eigenvectors of [3 20— F, PO](SOO -F, )—1 [50 »—F, P] with respect to
(Ser—Frr)-
In other words, the first /# columns of U would be
A=(,...0,). | (3.42)
Equation (3.37) is then given by

~

6 =(SppA-FppA)[ A (Spp - 1«3,,,,)21_]“1 , (3.43)

and © =(&4'Hp; — Hyg | Hyy, with
Q, =(Sy—Fn)~[Fop ~ Fop JA(A[Spp ~ Fp ]21)“1 A3 Fp ], (349
because the vectors are normalized by the condition A'(S,, — Fp,)A=1. Therefore,
the maximized likelihood is given as

L ijll—,&'[s,,o — Fpo (S0 Foo) ' [Sor - Fo,,],i] . (345
in using (3.41) and (3.42)

[Sr0 = Fro J(Soo = Fin) [Sor = For JA=(3pr ~ Fp ) AT,

and since A'(3,, — Fpp) A= 1, we can write (3.45) as

L-IZnI:Ix = ‘(Soo _E)O)HIA —A'(SPP _FPP)‘:‘TAI = l(soo "E)O)“Ih —TAI >
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L2 =[S0 - Fo) ] T (3.46)

where T, denotes the diagonal matrix of the ordered eigenvalues and A is the matrix of

the corresponding eigenvectors. Maximized likelihood function under the whole

parameter space will then be

k
L-g%mmm=[(sm -F, )[1:[ a-,).

Thus, the ratio of these two likelihood functions gives

h

A - Loa ‘(S%_%)i‘;zr(lii)
agg 2N = k A =% -
:ila;metﬂspm l(soo_Foo)l“ “(1-7»{) H(l';“i)
i=1 i=k+l

And so, the likelihood ratio test statistic of the test for the aggregates is

k
2InA, =-N Y In(l-£) (3.47)

i=h+1

where p) ’s are ordered eigenvalues 1> /il >..> ﬂA,k >0 of

1

[0~ Fpo (S0 = Fpo ) [Sop — Fyp ] with respect to (S, — Fpp ). This means that 4’

are the solution of |X(3,,,, - FPP)—[SPO - Fp ](300 -F, )_1[30,» - E)p] =0.

It is important to note the difference between our test statistic in equation (3.47) and the

test statistic in (3.9) derived by Johansen (1988). The eigenvalues /ii ’s in Johansen’s

statistic are the solution of }kSPP -3 (SOO)_] Sop

=0. Temporal aggregation affects

the error structure of the process. We need to add this effect into the test statistic in terms
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of product moment matrices of error terms, and hence the eigenvalues A:, ’s should be

obtained from the solution of l?» (3 rp —Fop ) —[3 ro— Fpo ](500 - Fy, )_1 [30 »—F, ,,] =0

when aggregates are used in the test..

3.4.2 Asymptotic Properties of the Test Statistic:

Since x, is an integration of order 1, X, is also integrated of order 1. So, AX,

is stationary and the null hypothesis is satisfied for some & and 4 of full rank /. Hence,

we can express AX, in terms of the E7’s by its moving average representation,
AX, =¥(B)E, = Z‘IJ,.E » (3.48)
=0
where

W(B)E; =(1+B+---+B"" )2 [{f’%] a,,

for some exponentially decreasing coefficient ¥;. The null space for ¥(1) =Z‘P;
i=0

4

given by {(f |[P()'¢E = 0} is exactly the range space of IT ., that is, the space spanned by
the columns in 4 and vice versa. We thus have the following representations:

IT,, =aA’ and ¥(1)=@71d", (3.49)
where @ and & are kx(k—h) matrices of full rank consisting of vectors orthogonal to
the vectors in 4 and a ; 7=(Fp@)" is (k—h)x(k —h) full rank matrix with g , and is the

derivative of ®(z) for z=1, and ¢'4 = 6'a =0 (Johansen, 1991).
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We can represent X, as
T ,
XT ZZAXT'.i =(XT “XT-I)"'(XT—l "XT—2)+"'+(X1 _Xo)
j=0

where X,=0. The covariance function of AX, ’s is given by
7 () = Var(AX, ,AX . Do » (3.50)

and we define the matrices as

0y =7 ,e(i— ) =B(AX, ,AX] ;) ;5 1,j=0,1,...,P-1 (3.51)
G =[Z xAG(j)} .1=0,1,..., P-1 (3.52)
j=p-i ok
and
O =[_Z| 7.6 j)] : (3.53)
J=—0 kxk )
and finally as

o {Z zr,m(j)} : (3.54)

And so, the following relations hold:

76 (0) = ZIP,'QELP;H— )

j=0

Tao= D ¥,Q ) ¥, =¥HQ¥(),
j=0 Jj=0
r-pr

Var(X, )= Y. (TP-|i)7,6(),

j=T+P
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F—i
CoV(Xy_p,AX; )= ) T4,

j=P—i

which shows that

Var(X, INT) > Y 7,60 =746,

=—0

and

Cov(Xy_p AX; ) > Y 746()) =

j=P-i
The relation
N-P N-P
Var(A'X, ) =(NP) D Am (D= Y |ijd'7,c(DA
Jj=N+P j=—N+P
shows that
Var(A'X,_ ,)> A'o,A, (3.55)

and since A"¥(1) =0 implies that 4’z . =0, the first term disappears in the limit.

To be able to find the asymptotic distribution of the test statistic given in equation
(3.47), we need to prove the following five lemmas. We will now address the asymptotic
behavior of the product moment matrices that are given in equations (3.26)-(3.31).

Let W be a Brownian motion in k-dimensions with the covariance matrix Q.

Lemma 3.1: If E(hf) is finite where h,=Z—{‘PHl+‘I’m+...}ET_s , for

s=0

N > o, then

Q) N'2X_ SWOW (), (3.56)

(M)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



74

b) M, 50,,i,i=0,1,..., P-1, (3.57)
a.s. 1
¢) M, >¥() [W(@W)¥() +0,,,i=0,1, ..., P-1, (3.58)
]
d) AM,, A5 A'c,,A, (3.59)
w 1
e) N'M,, —>‘P(l){ I[W(s)][W(s)]' ds}‘l’(l)’ , (3.60)
0

1

w r
f) Rpg = ¥(@) JW(s)dW(s)' uj, g » Where ' =(1 --- 1)1ka’ (3.61)

0
g) ANpp —2550, 5, . (3.62)
h) Nop —25>—(O0; - Ol )diag(Qp )y o4 (3.63)
DN g — diag(Qp) gpgr - (3.64)

Proof of Lemma 3.1:

a) Let the k-dimensional standard Wiener process W(.) be a continuous-time process
associating with time se[0,1] and with the (kx1) vector W(s) satisfying the
following:

i) W(0)=0.

ii) For any time 0<s, <s, <...<s, <1, the changes [W(s2)-W(s1)], [W(s3)-W(s2)]....,

[W(s)-W(st.1)] are independent multivariate normal with [W(s)-W(r)]~N(0,(s-n)I).

iii) For any given realization, W(s) is continuous in s with probability 1.

Suppose that {E, }_ is a k-dimensional i.i.d. vector process with mean 0 and the
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covariance matrix €, and let

(0 for 0<s<I/N
El
— for1/N<s<2/N
JN
c (5= 5t E for 2/N <5 <3/N (3.65)
JN
E+E,+..+E, for o=1
“ Jﬁ'—

that 1s,

: Ns}
Cy(s)=N"(E +..+E\)=N"» E, (3.66)

T=1
where [s] is the integer part of s. By applying the central limit theorem, we then obtain

[Ns] [Ns]
Cp5) =Y

N INs ZETZJE'\/[%S‘]ZET_L)‘/E‘N(O’QE)';N(O,SQE) (3.67)

as N — o, because the E, are i.i.d. with 0 mean and the covariance matrix Q,

INC ()W (). (3.68)
The equation (3.48) can be written as
X, =X, ,+E, +VE, +¥V,E, ,+...
=X, ,+E,_+VYE, ,+V,E, _,+. . )+E +VE _ +VY.E_, +...
=X, +E, +(I+¥Y)E,  +.+(I+¥ +. . +¥Y, DE +(¥, +..+ ¥, )E, +..
X, =X, +¥Y(OWE, +E,+..+E.))+h,—h, (3.69)

where ¥, , is the i-th row and j-the is the column element of ¥, ,

20

Zrl‘l’uj <o, ¥()=I+¥, +¥,+...and hT:Z_{ o
r=0

Yo+, + B

5=0
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Therefore, let Z y(s) = N32x [Ns]

(]
JINZ, (s)=N" [Z YE;, +hiyy - ho] . (3.70)
=1

where X, =0. By using (3.70), we can obtain

INZ, () PAWNC, () > FOW(), (3.71)

where Y(DOW(s5) is distributed as N(@,s¥(1)Q2,¥'(D) because

4
defining Sy (s) = N7 ;. Sy ()—0. To see this, note that

P {szﬁ)l,)l]lsN(S)l > e} =P {UN'lhll > s] or....or [IN'th’ > e:}}
< N.P{[IN‘lh,l > s}}
N ht}4 (.72)

<N
et

B(#7)
= Noet

where the next-to-last line follows from Chebyshev’s inequality. Since E (h‘:) is finite,

P
this probability goes to zero as N — oo, establishing that Sy (.)—>0, as claimed

(Hamilton, 1994).
N N

b) M, =N">Z,Z/ =N"> AX, AX}_;;i,j=0,1,..., P-1.
=1 i=l

By using the law of large numbers,

ij -

M, = NJEN_:ZiTZ}T = N-liAXr—iAX'T—j 1;E(AXT—"AX}‘J') =9,
T=1 =1
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N N

¢) My =N">"Z,Z,, =N"> X, ,AX; ;,j=0,1,..., P-1.
T=l 7=l

By using (3.71),

}‘\[ﬁ‘ Z, (S)d5=i N'Xx (5] -:; ¥(1) lJ‘]V (s)ds,

T w
and since X, = > AX,_;, AX, ,—>¥Dd¥(s)).
Jj=0
Therefore,

N N N (T-P
M, = N-lz ZpZy = N—IZ Xy pAXr, = N Z(Z AXJ’JAX}"'
=1 \_j=0

r=1 f=1

—>¥(1) I W (s)(d(W (s)))'dsP(1)' + i Var(AX,,AX7, ;)

j=P-i

=P(1) [W (s)AW (5))) ¥ (1) +0,

because Cov(X,;_,,AX,_,)—> Z 7z e()=0p.
j=P-i
d) Given in (3.50).
1 w 1
e) By using (3.47), J' INZ, (s)ds > ¥(1) j W (s)ds.
0 0
Therefore,

N'M, = }[JEZN(s)][JﬁZN(s)]' ds—w>‘£‘(l){ ]J.[W(s)][W(s)]' ds}‘l‘(l)’ :

) Because
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INZ y () =N X[y = [Z‘I‘(I)E +h, 0] SPOW(s),

N2 X vy > POW(s) and N'E;_, >dW (s),j=1,.., Q.
Hence,

N N N
N pp =N"ZXT_,,E'=N'1 [ZXT_PE;,I ZXT_,,E;_Q]—">
T=1

T=1 T=1
1 1

k40 J.W(S)dW(S)' - ¥ -[W(S)dW(S)' =¥ IW(S)dW(S)' Ui, i

0 0 0

where #' = (1 1)'IX ok and is a unit vector of size Qk.

g)

N N
AR pp =N X AXy pE = N A [X_p +P()E, +...+ Ep_)+hy_p~h_p|E'

AN T-P ,
=N"A Y IY) X E;+hp_p—h_p |Er,
T=1 i1 T )

by (3.47) and assuming X , =0 and A"¥(1) =0, we will obtain

AR pg i’01><Qk >

where N“ZEE'—)dlag(QE) poge» =1 Q

h)

Rop =N 2 AXE'=N" Z I 46 Xr-p+Er— 29 E)E’
=1 i

T=1 i=l
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by (3.71) E hT P E’——>0 assuming X , =0, IT,,¥(1)=0. Also, by
T-1 '
using the independence of errors E.F :; 0 . Since

Q '
i=1

NOE as. —(®11k @Qlk )kak diag (QE )QkXQk’

where N'IZE E —2% dlag(QE)Qkak, i=1,....Q.

T=1

i) By applying the strong law of large numbers, we will obtain

E,_

N N
Nog = N'IZEE' = N'IZ E (E;‘—l EI"-Q)

T=1 T-1
E,,

E T—IE;‘—I e ET—IE;‘—Q

N

= N-‘Z

™ E, oEry - Ep,Er,

—_—> . =diag(Q ) orox
0 Q.

Q.E.D. (for Lemma 3.1)
Now let’s introduce the following notations:

3, =[M, M,,MM] ,i,j=0,P,
where M. =[M, ] ij=1,..,P-1 : M, =[M] ,,i=1,...P-1 :

M,. =[M,;] _, ,i=1,...P-1.
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and

3, =[0;-0.0l0.,] ,ii=0.P. (.73)

kx

where o

4>0p>0x and o,; defined by the relation (3.51), (3.52) and (3.53).

Lemnia 3.2:1f 2;,1,j=0, P is defined as in equation (3.73), then
Zoo =112, +Qp +0]Q, +..+0Q, (3.74)
Zopll =T Zppll e —OQ I g, (3.75)
and since II ., =aA’ and aA"¥(1)=0,
S =GATppAQ +Qp +OIQ, +..+OLQ, (3.76)
and
a=3,AAL,A)". (3.77)

Proof of Lemma 3.2:

The ECM of the aggregated series can be written as

P-1

AXy = ) 1,AX, 16X, , + B, ~OF . (3.78)
i=1
In multiplying both sides by AX,. ,,i=0, 1,..., P-1 , we will obtain
0
AX,AXG, = AX AX;  +TL, X, ,AX; , + E,AX;  ~ ) ©,E, AX; .
i=1

And then, we will obtain
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P
N AX AAX, =N q,AX AX]
+N" IIAGXT PAX]  + N" E,AX;_,—N" i@ E,_AX; ,,
that is,
P-i o
M, = Y M, +aAM, +N" Y EAX; ~N ©.E, AX,,, fori=0,.P-1.
0i 12__1: Z T- Z;; Jjr-j T
(3.79)
Multiplying both sides of (3.78) by X,_, gives
P-1
AXTX;‘—P = Z"iAXr-iX'T—P +HAGXT—PX;'—P + ETX;‘—P "iGjET—jX;—P .
i=1 =1
We will then obtain
P-1 N @
My, =D 1M,y +@AM,, +N° ZETX;_,, NN 0,E, X, (3.80)
J= T=1 T=1 j=1
Letting N — oo gives the equations
P-1
’ 2 2
Ow= ) M0 +AACy, +Qp +O]Q, +.+OLQ,, (3.81)
j=1
P—1
«—Zq,a +ad's,,i=1,2,..,P-1 (3.82)
P-1
G pod= Z 1,0,A+ad'c A . (3.83)

=

Because g<P, N” ZZ@ _Xrp goesto0as N »>wo.

F=1 j=1
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Defining 7. = {7, j=1,...P-1}, (3.81), (3.82), and (3.83) can be written as

Oy =0y + QA +Q, +OQ, +..+0,Q,, (3.84)
o, =m0n tad'c,,i=1,2,...,P-1 (3.85)
0pA=n0.,A+aAc,A. (3.86)

By using (3.85),
N = 0pom —aA'6,.07 . (3.87)

Replacing (3.85) in (3.84) and (3.86) gives us

~1 —3 2 2
Oy = OO Oy —AA' 0,00, +aA' G, +Q +OQ, +..+60,Q

Gy~ OGOy = AA(Cpy ~ 00300 +Q, +OIQ, +..+0Q,
To = QAT +Q, +O]Q +..+0,Q,, (3.88)
S =T1Z 0 +Q, +02Q, +..+ @30, (3.89)

and

— ~1 ’ -1 ’
6,,A=0,0,,0,A~0AC,0.0pA+aA G ppA,

(Gop — CpOnGp)A= QA (O pp — 0 p 050 p)A,
T pA=aAZ, A, (3.90)
where I, =ad’.
By multiplying both sides of (3.90) by a', we have
Zopllyg = I ZppIly -
Also, by using (3.90), we obtain a as
, -
a=2,A(AZ,pA) . (3.91)

Q.E.D. (for Lemma 3.2)
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Lemma 3.3 If § is chosen such that é'a =0, then, for N — o,

) Jp—Zy, (3.92)
1 ifro

b) 63, —2>8' [(dW W ¥(1) - &' IHZ @,.de}w'wa)', (3.93)
0 o i=l

) A3, —2> A'T,,, (3.94)

i

d) N7'S,, —>¥(D) I W (s)W'(s)ds P (1), (3.95)

) A3, A—25 5> A'T A, (3.96)
1

f) Hpp —| ¥(1) .[W(s)dW(s)' Uy, o » Where uj =(1 - )1 o’ (3.97)
0

g) AHpp —">0,0;, (3.98)

h) H > diag(Qg),, o » (3.99)

) Hyy—22>—~(0,1, - 8,1, )diag(Q;),, o (3.100)

Proof of Lemma 3.3:

Equations (3.78) and (3.79) can be written as

M, =M., + @AM, +N“ZE AX. ,~N Zi@ E, AX, .,  (3.101)

T=1 T=1 j=1
and
M,, =M., +@aAM,, +N'Y E X| ,—N f@ E,_X.,. (3102
; Z—l J=1 !

Solving (3.101) for 7, gives us
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N N
. =M M —aAM M} +N“‘ZE,AX;_*M;‘ —N"Zi@ JEp AXG M (3.103)
r=1

T=1 j=1

a) Equation (3.78) when i = 0 can be written as

N N
My, =M., + @AM, + N Y E,AX; —N"Zi@ JEp AX,.  (3.104)

T=1 T=1 j=1

By replacing (3.103) with (3.104), we will obtain

N
My, = Mo M:! — @AM, MM, + N7 ) E,AX; MIIM,, -

T=1
N 0
~N"Z D 0,E, AX; MM, +aAM,. +
T=1 j=1
+N7'» E,AX; -N" ©,E, ,AX;,
T=1 T=1 j=Ii !
that is,
N
S = @A (Mpy ~MpMIM,, )+ N EAX] MM, —
T=i
N N N
_N-lzi(a JEr_AX; MM, + N E,AX; —N"Zf@ JEr AX},.
T=1 j=1 T=1 =1 j=1

As N-—>ow , using Lemma 3.1, Lemma 32 equation (3.88) and
N

NTY 0.F, AX; —2500,,
=1

o~ a.s. r -1 2 2
S —22>aA (04 ~65.6760 )+ Qp +O]Q +..+OLQ,

=@AT, +Qp +O]Q, +..+OLQ, =,

b) Solving (3.101) for 7. and inserting into (3.102) gives us
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N
M,, =M, M:!M,, —2AM,,.M;!M,, + N”‘Z E,AX, .MM, , -

T=]
-N Zi@ E, AX}, MIM., + @AM, +
r=1 j=1
N N O
WNY E X, ,-N"Y N 0,E, X,
T=1 T=1 j=1

that is,
N
S,p = A (M ,p ~M . MiIM, ) +N‘1ZETAx;_,M:lM,P -

-N- ZZ@ E,_AX; M:IM,, + (3.105)

T=1 j=l

+N“ZET ,—N° Zi@ JEr Xy
T=1

r=1 j=1

Multiplying both sides of (3.105) by &' gives us
85, = 5aA (M, M M:IM.,,)+ N~ ls'ZE AX, M:M., -

-N ‘J'Zi(a E,_AX, M;IM.,, + (3.106)

=1 j=1

+N- ‘5'ZE X, -N" ‘J'ZZ@) E; X; .

T=1 j=1

N
Since E, and AXj . are stationary and uncorrelated, N"ZE,AX}_.M:.‘M,,,——”ﬂ——)O.

F=1

N @
N“ﬁ'ZZ@ E AX; MM, —*50, §aA'3,, =0 because y'a=0. Then, with

T=1 j=I
(3.72), N2 X, , —2 W)W , and with (3.71) we are given &' E, —2—>J5'dW .

Also,
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N N _Q
NSy i@ Er Xy p NN O, (X + PO(E, +.ot By )+ hipp—h_p)

T=t j=1 T=1 j=l

1 14
N Z@ de}l"‘P(l)’

o\ J=1

Therefore,

55,p —2>3' I(dW)W"P(l)' ~5 ][[EQ: @i)delW"P(l)' .

i=1
¢) Solving (3.101) for 7. and inserting into (3.102) gives us
N
My, = MMM, -2 AM, MM, -N Y E,AX; M1+
F=1

N
*N"‘Zf@),-ET_jAX;_*M::M*,, +aAM,, +

T=1 j=l

+N- ZE X! ,~N Zi@ Er Xr p,

=] j=i

that is,

3, =aA'S,, - N‘ZE AX, M +N”! ZZ@)E AX, MM, +

™ A (3.107)
4 , 4 '
+N TZE X, ,-N ;29 E, X, ,,
As N — «, from Lemma 3.1, the equation in (3.107) becomes
JppA—">aAZT A (3.108)

Since E, and AXj; ; are stationary and uncorrelated, n“ZE,.AX MM, —"="0.

1=}
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Moreover,

N N N
N'Mp =N ZprZip =N Xy p(AXG ) =N D Xy p(Xpoe = X7o )
T=1 T=1

=i

N N N
=N Ky pXpoe = Xy p X)) =N Xy p X7 -N' Y Xy pXiey (3.109)
T=l T=1 T=l

1 1
—* 59(1) I WW'P (1) - (1) IWW"I’(I)' =0.
0 0

By using (3.77),
I pA—22% LA(A'T,,A) " AT, A=E A,
or
A3, —>AZ,,. (3.110)
d) By the definition of 3,, in terms of M’s
Spp =M, ~M, M.M.,,
N N
where M, :N“Z;Z,.TZ}'.,r and M, =TZ_lZPTZlT , and where Z!, =(AX;_,i=l,...P-1).
By using Lemma 3.1, e)

1
N'M,, :)‘P(l){ J-[W(s)][W(s)]' ds}w(l)' .

and (3.108), we have M, M;M., —*—>0, and

hence,

N'S,, __L»P(l){ j [w[we] ds} w1y .

¢) In multiplying both sides of (3.106) by A, we write
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N N
3,pA = aA’JPPA—N“‘ZE AX} *M"‘A+N“Zi® E, AX; M M., 4+

T=i =1 j=i

+N- ZE X, ,A- N"Zi@ E, X} pA

r=1 j=1

or

N N
aA'3,,A=3T,,A+ N‘IZ E AX; M.AN" Z i@ Er_AX ] MM, , A~

T=1 T=1 j=1

(3.111)
N Z E, X , AN i@ Ey X A,
T=1 ja1
As N — «, by using (3.108), the equation in (3.111) changes to
A3, A—>aAl, A,
that is,
AT, A5 s A4S A,
f) By using Lemma 3.1 and ¥,, —*—> 0, we will obtain
i
Hpp =8 pg — M p MR, p —2—>P(1) jW(s)dW(s) (3.112)

0
g) AH pz = AR pg —M pM; 1N, ;) —25>0 because of Lemma 3.1 and (3.109).

h) Hpy =R gy —Rp MR, —*2> diag (Q, )Qkak because ¥, —=>>0.

i) In multiplying both sides of (3.77) by E'®" = iE} ,0, , we obtain

i=1

P-1

AX,E'® = Z nAX,_ E® 1 ,,.X, ,E® +E,E® -OFEE'® .
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Therefore,
N N P-1 i
N') AX,E'® =N" nAX, ,E®+N'» I1,.X, ,E'® +
N N
+N'Y E,E@-N') OFE®
or
N
N, 0 =N, 0+, N, 0+ N"Z E,E®-0X,0 . (3.113)
T=1

In replacing 7. by using (3.103), we have
R @ =M MR, 0 —~aAM, MR, 0 +

N N [1]
AN EAX MIR,O -NTY D 0,E, AX; MIX.,0 +

T=1 =1 j=l

N
LN p® + N ) EEO 08,0

T=1
or

N
H,® =ad'H, 0 +N" ) E,AX; MR, 0 -

T=1

N
-N" i@ Ep AX; MR, O+ N E,E'® -O8 @'

T=1 -1
By using Lemma 3.1, (3.98), and (3.99)
Hyp—>5—(01, - ©,l,)diag(Q;),,
Q.E.D. (for Lemma 3.3)

Hence, by (3.98), we can state that

AF,, >0, (3.114)
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A'Fpy >0, (3.115)
and
F,A—>0. (3.116)
Moreover, by (3.99) and (3.100),
a.5. -1 '
Fo> (00, - ©,1,)diag(Q;),, o0 (0i28(Qn)ppr ) 428(25) p (O -+ L)

=(0d, - ©,1,)diag(Qy),, (0, - ®Q1,‘)'=i®§QE.

i=1

(3.117)
Lemma 3.4: If 4,,...,4, are the ordered eigenvalues of the equation
PAZ,, A— A, 87T, 4]=0 (3.118)
where =X, —i@fﬂ i » then the ordered eigenvalues of the equation
i=1
P (Sor = For) S50~ Fro {So0 ~ Fao) ' [Sor ~ For | =0 (3.119)

converge in probability to (4,,...,4,,0,...,0).
Proof of Lemma 3.4:

We express the problem in the coordinates given by k vectors in A and ¥ where
YD) =ypd', pisa(k—h)x(k—h), y and § are kx(k—h), all are of full rank, and
y'A=8a=0. We will eventually choose & in a more convenient way. This can be

done by multiplying (3.119) by |(4,7G, )| and |(A4,7Gy)| from the left and right where

Gy = (7' (3pp—Fpp)7)"?; then the eigenvalues solve the equation
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[ A(Spp~Fpp)Ad A (Spp—Fpp ) 1Gy }

GIY\’Y'(SI’P _FPP)A Gz'vyl(spp —FPP);VGN

_{ A'[Spo _Fpo](soo “Foo)q [Sor “Fop]A A’[Spo “Fpo](soo _Foo)‘] [Sop "Fop]7GN j]
Gllv?"[sm “Fpo](soo "Foo )4 [Sep 'FGP]A G;v}'l[spo _Fpo](soo ’Foo )_1 [Snr _E;p]yGN

By using Lemma 3.3, y’A=0 , ¥1)'4=0 R and

Gz’vr’(spp —FPP)YGN =[(},’(SPP —FPP)V)_Uz] 7’(31’? —Fpp)y(f(spp "Fpp)r)—m =I

the eigenvalues have to satisfy the following equation

X[A’ZH.A o}_[A'z,,Og-'zOPA o] o (3.120)
0 I 0 0
or
PAZ,p A= AT, M, | =0 (3.121)
where
S, —Fyy & =3, —i@ng (3.122)
i=1

and I,_, is an identity matrix of the dimension k-, which means that the equation has

k—h roots at A=0. It is known that the ordered eigenvalues are continuous functions of
the coefficient matrix (Anderson, Brons and Jensen, 1983), and hence the proof of
Lemma 3.4 has been completed.

Q.E.D. (for Lemma 3.4)

Based on Lemma 3.4, we can say that

A @S,

A—>A (3.123)

where A is the first k eigenvectors of [S ro— Fpy ](300 -F, )_l [30 »—F, P] with respect
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to (3pp — Fpp). By using Lemma 3.3 and (3.91)

G =(SopA~HypHop Hop A) A'(3pp — Hpp Hs H ) A |

(SOI’/’i - E)P/’i)[za' (31’1’ - FPP )Ia]_l

G 5a=5,,AA,A)" . (3.124)
We now choose § of the dimension such that '« =0 in the following way. Let P,({)
denote the projection of R” onto the column space spanned by a with respect to matrix
¢! because ‘I’(l)';i =0; that is,
P(O)=a@¢ 'a) a'd. (3.125)
We can then choose & of full rank k% to satisfy
88" =4 (I~ P,()). (3-126)
Note that §'a =0, therefore

30" = I-P (SN =¢ " T~a@ ) a'd™)
= g—l _ éf-la(arér-—la)—lar -1 = (I__ ;—la(alé'—la)—l a')é’"l
8¢ =U-¢ (@ ) a)
685 =(I-¢"a@'a)'a)d =6
8¢ =1
of the dimension (k—h)x(k—h). From the theory of random coefficient regression
(Rao, 1965), P,(Q,)=P,(Z,) where X, is given by using (3.74).

Lemma 3.5: For N—»>w , N }:hﬂ,...,N 2; converge in distribution to the ordered

eigenvalues of the equation
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) (3.127)

}G’G'du - a[ ]G(dc)’ }{ ](dG)G}

where G is a Brownian motion in the k% dimension with the covariance matrix I.

Proof of Lemma 3.5:

Consider the ordered eigenvalues of the equation

[A'(s,,,, ~Fp)AIN A'(S, —F,,P)y/N:] _
7’(31’1' —F}P)A/N 7’(31'1' ‘E'p)?'/N

B‘:A’[Sro _Fpo](soo "Foo)_1 [So}' _FOP]A A’[Sro - PO](SOO _Foo

)
7'[31»0 _Fro](soo _I':)o)”1 [SOP _E)P]A 7’{31’0 ]( 00)

-1

[Sor _Ew]r
l[Nm' _F:)P]y

}o

(3.128)

For any value of N, the ordered eigenvalues are
=(NAY s B =(NAY ™
Since the ordered eigenvalues are continuous functions of the coefficients, we know from

Lemma 3.3 that ,él,...,ﬁk converge in distribution to the ordered eigenvalues of the

|

equation

A'[SPO"FPO](SOO_Foo)_llsop—E)p]A A'[SPO__FPO]( 00 Foo)l[ OP_EW]}'
7'[~Po"Fpo](soo_Foo)—l[Sop—E)P]A 7'[3P0—FP0]( 00 Foo)l[ OP_Foply

-B

0 0 AT, LT, A A'z,,,,g-‘( I dY)Y"I’(l))
0y ¥ [rreayy ]
1]

[lp(x) _fy(dr)'];-‘z‘,,,Ay' r’[‘Y(I) IY(dY’ ( (dY)Y"I’(l)}

This determinant can also be written as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



94

IBAE 308 " Zop |7 ) _[YY'du w()y —By’[‘l’(l) J-Y (dY)'}x

(3.129)

x{g-‘ ~ L5, A[ AT A A’ng“"}l: ]I(dY)Y"I’(l)'} y

which shows that in the limit there are & roots at zero. By applying Lemma 3.2, (3.123),

(3.124) and (3.125), we find
-1
(=L Al A, LTS, A] AT,
equals
LI -P(L) =65, (3.130)

and hence, the second factor of (3.129) is

. (3.131)

7' ¥() jYY’du‘P(l)’y—ﬁy’I:‘P(l) jy(dy)'}&s'[ j(dy)YW(l)}y

Thus, the limiting distribution of the k£ largesi B ’s is given as that of the ordered

eigenvalues for the equation in (3.131). And so, (3.131) can also be written as

1 1 1
| [rrau-p [r(av)ss [(ar)rifeayy-o,
1 1 1
IYY "‘“—BIY (av)ss’ j(dY )Y'|=0. (3.132)

By multiplying the left and right side of (3.132) with |&'| and |8| gives us,

=0. (3.133)

1 1 1
5 JYY'&'du—BJ IY(dY)'é'J' J'(dy)r'a'
0 0

0
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Now G =8'Y and is a Brownian motion with variance 84§ = I . Therefore,

li;[GG’du}—ﬁ[JG(dG)’}{J(dG)G}

The result of Lemma 3.5 is found by noting that the solution of (3.127) is the reciprocal

=0. (3.134)

value of the solution to (3.134).
Q.E.D. (for Lemma 3.5)
Theorem 3.2: Under the hypothesis that there are h cointegrating vectors, the

estimate of ® and Q, are consistent, and the likelihood ratio test statistic of this

hypothesis is asymptotically distributed as

tr { ](dG)G’H IJ.GG'du}l { ]‘G(dG)} (3.135)

where G is a (k—h)-dimensional Brownian motion with covariance matrix I .
Proof of Theorem 3.2:
From the expression for the likelihood ratio test statistic, the equation (3.47) can

be expanded as

(i)

i=h+1 i=h+l j=1 i=h+1 j=1
k . o0 (/{ / k .
2D IEES RSy Y SO0
i=h+1 J=2 J i=h+1

5 : (i’ )]
because — 0 asj— w. Hence,
= J

Jj=2
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27,y =-N) In(l=4)= Y Ni+0,1). (3.136)

i=h+1 i=h+1

Thus, from Lemma 3.5,

. k
~2In A =N In(1-k,)

i=h+1

:iNii +0p(1)>tr lilj-(dG)G'H]‘GG'du}—l{i"G(dG)'} :

(3.137)

i=h+l

The consistency of the estimator of Q. is as follows:

The MLE of Q,. is given by

A

Al Ayl A
QE2(300_FOO)_[SOP—E)P]A(A'[SPP—FPP]A) A'[SPO_FPO]
=(500'F00)_d"1'[51’o‘Fp0]

By Lemma 3.3 a) Sy, >3, and ¢) A'S,,A—>A'S,, 4. By equation (3.117),
a.s. Q as. a.s.
FOO—)ZGfQE. Equations (3.114) and (3.115) give A'F,, >0 and A'F,,—0, so
i=1
F,,A->0 .  FEquations (3.123) and (3.124) state that A'—>A' and
G a=3,,A(A'S,,A)", so that
GA(Spp — Fyp ) A'G Ty AA'E py A (A'E py AYA'E py A A'Z = By AGAE pp ) A'S

A Ay on R
QE=(SOO_F()0)_[SOP—E)P]A(A,[SPP—FPP]A) A,[SI’O—FPO]

o
55 T YO0, — T A A) AT,
i=1

By Lemma 3.2, equation (3.76) Zy, = @A’ AQ’+Qp +O]Q, +...+0,Q, , this means
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that T, i@ng ~ 2 pA(AZ A A, = Q. . Hence,
i=1

Q,->Q,.
The consistency of the estimators of @ are then as follows:

The MLE of @ is given as
O =(GA'Hp, — Hop ) Hyp
whete & = (SopAd—FopA )| A'(Spp—Fpp) A -
O =(¢A'H oy~ Hyg ) Hp

(S0 A= FopA) (S ) A] A~ |1,

By using Lemma 3.3 g) A'H —0 and by equation (3.123) ‘A— A . This means that

as.

(SopA—Fypd)[ 4 (3 —F,,,,)A]“' AH 0.

From Lemma 3.3 1) HOE‘J"S"—)—(@J:: ®Q1k)diag(QE)Qkak and h)
HEEi;diag(QE) kg - This means that  Hpy a—t[diag(QE)QkXQk]—l. Therefore,

as.

. . -1
HOEH;};-—)—(@J,‘ ®Q1k)diag(QE)QkXQk[dlag(QE)QkXQk:] .

Then,

as. ~1

O>(0-[~(0,+..+0, ) diag(Rs) .00 |) (488 (R )pge) =(OLi -+ ©pL,)=0.

QED.

We showed that the asymptotic distribution given in equation (3.135) is the same
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limiting distribution given in Johansen (1988). This means that to test cointegration for
aggregates we use the test statistic given in equation (3.47) with limiting distribution
determined by Johansen (1988). Hence, we can use the same critical values that are
determined by Johansen (1988).

If we recall the example given in Section 3, the inconsistent test results were
obtained when we used an aggregate series to test for cointegration without considering
the effects of aggregation. We now retest the cointegration for the aggregate series of
Example 3.1 by using the adjusted test statistic; we get consistent conclusions as are
summarized in Table 3.5. At all levels of aggregation, the test gives the same conclusion

of cointegration in the system with rank 1.

3.5 An Empirical Example on Cointegration

To analyze the results of cointegration tests for basic and temporally aggregated
series, U.S. wage and salary disbursements (WAGE) and U.S. real personal consumption‘
expenditures (PCE) have been selected. The source of the data is U.S. Department of
Commerce: Bureau of Economic Analysis. In the statistical analysis, we use SAS
software and in order to obtain the results of modified test and the estimates that are

developed in this chapter, we wrote a FORTRAN program with NAG FORTRAN library.
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Table 3.5 Trace Test for Cointegration using the Adjusted Test Statistic When the

Aggregate Series are Used
Ho: Rank=h | H;: Rank>h | Eigenvalue | Trace | Critical Value

m=1

0 0 0.5227 445.89 12.0

1 1 0.0036 2.16 42
m=3

0 0 0.7969 318.81 12.0

1 1 0.0000 0.00 42
m=4

0 0 0.8054 246.02 12.0

1 1 0.0035 0.53 42
m==6

0 0 0.7713 147.98 12.0

1 1 0.0046 0.46 4.2
m=8 ,

0 0 0.7665 109.59 12.0

1 1 0.0067 0.50 4.2
m=10

0 0 0.7231 77.06 12.0

1 1 0.0001 0.00 42
m=12

: 0 0.6956 69.56 12.0
1 1 0.0063 0.32 42

3.5.1 Analysis of the Basic Series
The monthly U.S. wage and salary disbursements in billions of Dollars (x,,) and
real personal consumption expenditures in billions of chained 2000 Dollars (x,,) are

selected from January 1959 to December 2000, and there are 504 observations. Figure
3.1 shows the time series plot of the data. Both WAGE and PCE have an increasing

trend and they are moving together.
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Figure 3.1 Time Series Plot of Monthly U.S. Wage-Salary Disbursements

and Real Personal Consumption Expenditures

To be able to decide the order of the VARMA parameters, we looked at the
minimum information criterion (MINIC) and partial cross correlations. MINIC is
proposed by Quinn (1980), Spliid (1983) and Koreisha and Pukkila (1989) and is useful
in identifying the orders of a VARMA (p, q) process. The partial cross-correlations have
the cutoff property for a VAR(p) model, and so they can be useful in the identification of
the order of a pure VAR structure (Ansley and Newbold ,1979). MINIC shown in Table
3.6 and the schematic representation of partial cross correlations given in Table 3.7
indicate that data are possibly generated either from a vector AR(2) or a vector AR(4)
process. In the estimation of the VAR(4) model, estimates of the third and fourth AR

parameter matrices are not significant so that we will consider vector AR(2) process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



101
Table 3.6 Minimum Information Criterion for Monthly WAGE and PCE

Lag MA O MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 29.361 29.394 29.407 29.420 29.433 29.445
AR 1 11.924 11.738 11.742 11.725 11.713 11.715
AR 2 11.781 11.735 11.727 11.725 11.722 11.722
AR 3 11.757 11.714 11.726 11.736 11.735 11.729
AR 4 11.699 11.717 11.730 11.739 11.736 11.720
AR 5 11.716 11.730 11.741 11.745 11.722 11.722

Table 3.7 Sample Partial Cross Correlations of Monthly WAGE and PCE

Variable/
Lag 1 2 3 4 5 6 7 8 9 10 11 12
WAGE +. .- . . .
PCE .+ .+
+ is > 2*std error, - is < -2*std error, . is between

To see whether x, and x, are stationary, the Dickey-Fuller unit root is
conducted. Consider again, the AR(2) process:
X, =¢x_,tdhx ,,+a,, t=1,...,n (3.138)
with x,,=0and {a,,} ~iid. (0,07),i=1,2. Equation (3.137) can be written as
X, =¢x_,;+0Ax,_,, +a,,, i=1,2. (3.139)
Testing for a unit root in model (3.138) is equivalent to testing the null hypothesis
in model (3.139) Hy : ¢ = 1 against the alternative hypothesis is H; : |[¢| < 1.
For this test, the test statistic is
(¢ —1)/(1—3)". (3.140)
Dickey and Fuller also proposed an alternative test based on the OLS t-test of the

null hypothesis Hy: ¢ =1,
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1 2
c 11 WOl -1
=015 2{[ | } | (3.141)

5 { I[W(s)]z ds}m .

Table 3.8 gives the result of the Dickey-Fuller unit root test for = (Tau). If we

look at the p-values for both series, we can see that the probability is greater than 0.05.

Therefore, this means that we can not reject Hy: ¢ = 1; that is, the series is not stationary.

And so, we can consider investigating whether there is cointegration in the system.

Table 3.8 The Dickey-Fuller Unit Root Test of Monthly WAGE and PCE

Variable Type Tau Prob<Tau
WAGE Zero Mean 15.10 0.9999
PCE Zero Mean 14.17 0.9999

Cointegration is the phenomenon that each component x,,, i = 1,....,k, of a vector
time series process X, , is a unit root process, possibly with drift, but some linear
combinations of the x,,'s is stationary. Thus

x,=pu+x,, +TAx, +a, \ (3.142)
where a, is a zero-mean k-variate stationary time series process and x is a k-vector of
drift parameters (in our example, u is not significant, so we choose u = 0), but there

exists a kx h matrix 4 with rank s#<k such that A'x, is stationary.

In Table 3.9, Hy is the null hypothesis and H, is the alternative hypothesis. The

first row tests how i = 0 against 4 > 0; the second row tests how A =1 against h> 1. The
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k
Trace test statistics in the fourth column are computed by —nz log(1—A4) where nis the

i=h+1
available number of observations and 4 is the eigenvalue in the third column. The critical

values at a 5% level of significance are used for testing. Hence, the above test results

indicate that the series x,, and x,, are cointegrated with rank 1.

Table 3.9 The Trace Test for Cointegration of Monthly WAGE and PCE

Hy: H;: Critical Drift DriftIn

Rank=h Rank>h Eigenvalue Trace Value InECM Process
0 0 0.3882 250.76 12.0 NOINT Constant
1 1 0.0082 4.11 4.2

We can now write the error correction model ECM as

Ax, =TAx,_, +Mx_, +a,, (3.143)

where x, =(x,, x,,),a,=(a, a,) and I=yA4'.
The estimation of (3.143) leads to the following results:

-0.31106 0.03675 . 0.00282 0.00215
— X a
! 0.00271 -0.22775) ' {0.00278 0.00212) 7>

with

~ (1.000Y) . {0.00282 A 347.424 29.679
A= Y= ,and Q= .
0.764 0.00278 29.67921 371.032
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'3.5.2 Analysis of Temporally Aggregated Series

We now consider the quarterly U.S. wage and salary disbursements (X, ,) and
real personal consumption expenditures ( X, ;). Thus, the data are aggregated with m = 3.

The sample size is now N = 126. Figure 3.2 presents the time series plot of the
aggregated data. Both series have an increasing trend as in basic series. The data seem

to be nonstationary.

25000 -

20000 -

15000 -

10000 -

5000 -

0 T T T T
Mar-59 Mar-69 Mar-79 Mar-89 Mar-99

Time

| ——WAGE ——PCE

Figure 3.2 Time Series Plot of Quarterly U.S. Wage-Salary Disbursements

and Real Personal Consumption Expenditures

To be able to decide the order of the VARMA parameters, we looked at the
MINIC and partial cross correlations. The MINIC in Table 3.10 suggests a VAR(S)
model while the schematic representation of partial cross correlations given in Table
3.11 suggests a vector AR(1) model. In light of the result from Chapter 2 that

aggregation leads to a mixed ARMA model and VAR(2) is used for the basic series, we
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will consider a VARMA(2, 1) model for the aggregates.

Table 3.10 Minimum Information Criterion for Quarterly WAGE and PCE

[l

ag MA 0 MA 1 MA 2 MA 3 MA 4 MA 5
33.734 33.834 33.873 33.909 33.955 34.001
16.802 16.829 16.805 16.728 16.687 16.678
16.696 16.688 16.716 16.696 16.689 16.714
16.662 16.706 16.711 16.714 16.722 16.718
16.628 16.661 16.698 16.731 16.748 16.776
16.604 16.649 16.701 16.734 16.769 16.769

EEERER

Table 3.11 Sample Partial Cross Correlations of Quarterly WAGE and PCE

Variable/
Lag 1 2 3 4 5 6 7 8 9 10 11 12
WAGE +.
PCE .+ .. .. - . .
+ is > 2*std error, - is < -2*std error, . 1s between

We applied the unit root test to each series and the results are presented in Table
3.12. Since both p-values are greater than the significance level of 5%, the aggregated

series is nonstationary at a 5% level of significance for m = 3.

Table 3.12 The Dickey-Fuller Unit Root Test of Quarterly WAGE and PCE

Variable Type Tau Prob<Tau
WAGE Zero Mean 13.45 0.9999
PCE Zero Mean 8.36 0.9999

For the cointegration analysis, we first apply Johansen’s Trace test to the data.
The results given in Table 3.13 indicate that there is no cointegration in the system and
the system is /(1). This result contradicts with Theorem 3.1. This example also shows

that we cannot use the unadjusted Johansen’s trace test for aggregates.
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Table 3.13 The Trace Test for Cointegration of Quarterly WAGE and PCE

using Johansen’s Test Statistic

Hgp: Hy: Critical Drift Driftin
Rank=h Rank>h Eigenvalue Trace Value InECM & Process
0 0 0.4638 111.19 12.0 NOINT Constant
1 1 0.0454 7.72 4.2

To be able to conduct a cointegration test for aggregates, we must first estimate
the parameters of vector ARMA (2, 1) for aggregates. Since we need the error terms in
order to calculate the test statistics, we fit the differenced series by maximum likelihood

estimation method by using

(I-®B-®,B’)AX, =(1-©B)E,.
The MA representation of this model can be found by

AX, =(I-®B-®,B)" (I-©B)E,.

The ECM is given by

AX, =qAX,  +11 X, , + E, —©F,_,, (3.134)

where X; =(X,; X,;), Ep=(E; E,) and I, =ad'.

Since the error terms in VARMA model and ECM are the same, after maximum
likelihood estimation of the parameters of VARMA model, we can obtain the residuals,
E‘,_, and use them to calculate the test statistic given in equation (3.47). The results

given in Table 3.14 imply that the aggregates are also cointegrated with rank 1 at 5%

significance level.
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Table 3.14 The Trace Test for Cointegration of Quarterly WAGE and PCE using

Adjusted Test Statistic
Hp: Hp: Critical Drift DriftIn
Rank=h Rank>h Eigenvalue Trace Value InECM Process
0 0 0.3059 61.82 12.0 NOINT Constant
1 1 0.0028 0.47 4.2

We can now write the error correction model as

AX, =nAX, +0,.X, ,+E,-OF, (3.144)
where X, =(X; X,;), Ep =(E;; E,;) and I, =aA’. The estimation of (3.144)

gives the following error correction model for this data set:

_[1.077 —0.187 N 0.0097 —0.0059 1.649 —0.294
T711.198 —0.164| ' |-0.0046 00028 | 7% ' |[1.198 -0381| ™'

with

22426.4 130118.6

. [4813x10°7] . [2012 ~ [93975 22426.4
A= ,@= ,and Q, = :
2.945x10° —95.7
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CHAPTER 4

THE EFFECT OF TEMPORAL AGGREGATION ON GRANGER CAUSALITY

4.1. Introduction

The use of aggregate data for causal inference is common in the applied
econometric literature. The most widely used causality tests are the Granger causality
tests. There is considerable theoretical literature that investigates the influence of
temporal aggregation on ARIMA models (Wei, 2006). A number of studies have also
focused on temporal aggregation and dynamic relationships between variables and show
that temporal aggregation weakens the distributed lag relationships (Telser 1967, Zellner
and Montmarquette 1971, Sims 1971, Tiao and Wei 1976, Wei 1978a, Wei and Metha
1980). Tiao and Wei (1976) and Wei (1982) find that temporal aggregation turns one-
way causality into a feedback system. Most of these studies consider the distributed lag
models. Marcellino (1999) considers a vector model and shows that cointegration is
invariant to temporal aggregation, but many other aspects such as seasonal unit roots,
exogeneity, causality, impulse responses, trend-cycle components, measures of

persistence and forecasting are affected by the aggregation process.

A time series {x,,} is said to cause another time series {x,,}, if the present value
of x, can be better predicted in terms of mean square error by using the past values of x;

and x, rather than using only the past values of x, .

Liitkepohl (1991) investigates the necessary and sufficient rules for non-causality
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between two groups of stationary time series variables. Consider the time series x, with

the MA representation

X, = l:xl,l ] _ {TH(B) lFlz(B)]at 4.1)
X2t Y, (B) Y, (B)

where x,,;i=12 are k;x1, i=1,2 vector, a, is a k-dimensional normal white noise
vector with mean 0 and a covariance matrix Q, and ¥;(B) = Z‘I’ch ;1,j=1,2. Then,
£=0

x, does not cause x, if and only if ¥,,(B) =0. Similarly, x, does not cause x, if and

only if ¥,,(B)=0.

4.2 Effects of Temporal Aggregation on the Causality Relationship between Two
Sets of Variables

In the literature there are studies on the effects of temporal aggregation on the
Granger causality. However, these studies do not take into consideration the fact that the
form of the vector time series model changes after aggregation. For example, when the
vector time series is generated from a VAR(1) process, aggregation changes the process
into a VARMAC(1,1) process as shown in Proposition 2.2. Thus, the non-causality
conditions may not be the same for basic and aggregate series.

Consider the following two-dimensional VAR(1) process

(I —¢B)xt =a, (42)

1-¢,B  —¢,B || x, %
—¢uB  1-¢yB || %, - Ay,
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where a, vector is a sequence of ii.d., random variables with mean vector 0 and

covariance matrix 2 with MA representation

X1 _ 1—¢HB -¢lzB B %4, - 1 1"¢2zB ¢12B @,
X1 ¢y B 1-¢pB| |a, (1"¢113)(1—¢223)_¢12¢21Bz ¢B  1-¢,B|a, ‘

By Liitkepohl (1991), the non-causality condition that x, does not cause x, for VAR(1)

model is ¢,, =0. As shown in Proposition 2.2, the corresponding aggregate model for

the given basic model in (4.2) is the following two-dimensional VARMA(1,1) model

(I-¢B)X, =(I -0B)E,
I:l_%lB —¢,B ][XIT jI 2{1‘”9113 —6,B :l[EIT] (4.3)
~ouB 1-¢uB || X —0yB 1-0,B || E,;
where E, vector is a sequence of i.id., random variables with mean vector 0 and

covariance matrix Q,, ¢ =¢™ and @ is the solution of the following quadratic matrix

equation
T, +0,+T; =0,
where

S S5

j=0\ i=0 i= j=1 i= i=

=SS p(Ee)

and Q, =-T',(¢")". Hence, the MA representation of (4.3) is given by
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{ : ] { ) ]1[: ) ; :i[ l ]
27 ;21 ;ZZ 2t 22 2T

_ 1 ]:l -¢pnB  9,B }!:1 -6,B -6,B }[Ew ]
(l_ﬂxB)(l”‘Cf’zzB)“(ﬁqu;Bz B 1-@Bj| -6,B 1-6,B| E,,

= 1 [(1-(‘9228)(1_0113)“(”1202132 "“(l"(PzzB)euB+¢1zB(l"ezzB)]|:E1Tjl
(l -9 18)(1 - q’nB) - ¢12¢2132 {_¢le(1 - 01 IB) - (l - 18)021B "(02151232 + (l - (DHB)(I - szB) EZT

This means that the non-causality condition X, does not cause X, for its aggregates are
@,,B1-6,,B)~(1-¢,,B)8, B=0, that is, p,,B~¢,6,B’-6,B~¢,0,B°)=0. So we
can write the non-causality condition for aggregates as ¢, —6,,=0 and
@116 — 9,6, =0, which means that ¢, =6, and ¢, =6,

The noncausality conditions for the basic model in (4.2) and for the aggregate
model in (4.3) are clearly not the same. In general, the conditions on non-causality are
different for basic series and aggregate series.

Example 4.1 To illustrate the test with basic series and aggregate series, let us

06 -0.5

consider the two-dimensional VAR(1) process in (4.2) with ¢ =[ 0 08

]and a,

being normally distributed vector with zero mean and a covariance matrix

_{1.5 0.6

06 2 0]. The aggregate model for m = 2 is obtained as VARMA(1,1) with

:l. It can be seen

036 -0.7 -0.11 0.07 545 0.07
o o3 ]

0 064 -0.09 -0.17 0.07 9.42
that the non-causality condition that X, does not cause X, is not satisfied because
9, =0£60,=-0.09 and ¢, =036=%6,=-0.11. To see the consequence of using

aggregates in testing causality, we obtain a simulation of a basic series of 15,120
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observations from the given VAR(1) process in (4.2) with the above parameter matrices.
The series are then aggregated for various m, and likelihood ratio test introduced in
Section 1.5.1.1 is performed for each aggregation period of m from 1 to 12. The p-

values of these tests are summarized in Table 4.1.

Table 4.1 The p-values of the Likelihood Ratio Test for
Non-causality Using Aggregate Series

M p-value m p-value
1 0.234922 7 7.4E-214
2 0 8 1.3E-170
3 0 9 3.2E-135
4 0 10  |9.94E-97
5 0 11 1.92E-84
6 3.2E-308| 12 |2.96E-65

Table 4.1 shows that for the basic series, when m = 1, as expected, there is no

causal relationship from x, to x, at a 5% level of significance. However, when
aggregate series are used, the test indicates a causal relationship from X, to X, at all

levels of aggregation. The similar result was derived earlier by Tiao and Wei (1976), and

Wei (1982) in terms of distributed lag models.

43 Temporal Aggregation and Granger Non-Causality Tests in Cointegrated
Systems

In a vector autoregressive process, the Granger non-causality of one set of

variables for another set is characterized by the number of constraints on the

autoregressive coefficients. If the process is stationary, the test for non-causality is

usually performed using either Wald test or the likelihood ratio test which are
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asymptotically distributed as chi-square distributions. Mosconi and Giannini (1992)

suggest a likelihood ratio test which is more efficient in order to test non-causality in
cointegrated systems because it imposes the cointegration constraints upon both the null
and the alternative hypothesis. Therefore, we will use their approach to test causality of
aggregate series in cointegrated systems.

In Chapter 3, we have showed that the well-known cointegration test, trace test,
fails to detect cointegration for aggregates because it does not consider the model change
due to aggregation. The test for non-causality that Mosconi and Giannini developed also
fails to consider this effect. Although their likelihood ratio test for non-causality is
efficient by imposing the cointegration constraints upon both the null and the alternative
hypotheses, it is not suitable for testing non-causality in cointegrated system using
aggregate series. In this section, we will develop a modified test statistic to test non-
causality in cointegrated system for the aggregate series.

Given a k-dimensional cointegrated /(1) series x, that follows a vector

autoregressive VAR(p) process:

¢,(B)x, =a,. “4.4)
where ¢,(B)=I-¢B—..—¢ B and ¢, ’s arc kxk matrices, @, ’s are iid k-
dimensional random vectors with mean 0 and variance-covariance matrix Q. We have
shown in (3.11) that (1 - B)X r 18 1(0), and its Wold representation is given by
(-B)X, =¥(B)E, = > ¥ E, ,, (4.5)
i=0

where Z]‘I’A <o and W(1)#0, and can be obtained through the relationship

z
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B [ BT
W(B)E, =(1+B+---+B"") [(1—13)] a,,. (4.6)
Furthermore, as shown in (3.13), we have
®,(B)X, = 0,(B)E, 4.7)
where
@, (B) = adj(¥(B)) /(1-B)**
=I-®B-..—®,B°
and 0,(B) =det(¥(B))/(1-B)'=1-0,B~..-0,B°.

By Granger representation theorem, the error correction representation of the
basic series is given by

p-1
Ax,= ) TAx, +10x,, +a, (4.8)
i=1

whereas the error correction representation of the aggregates as shown in (3.14) is given

by

P-1
AXp =) mAXp, +TL Xy, +OgB)E,, (4.9)

i=l
where 77, =—I+®, +---+®,, i=1,..,P-1,I1 ., =—D®p(1)=aA' forsome .
The test statistic and its distribution derived from the error correction presentation
given in Equation (4.9) are summarized in the following theorem.

Theorem 4.1 For the basic generating process given in (4.4), let X, be the

corresponding aggregate vector series and X, =(Xy;, Xy ,)" where k=k +k,. To test
Ixk,  Ixk,

the null hypothesis that X, does not cause X, is equivalent to test
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Hy(hh,h,): UnV =0, UTL U, =0, I,=ad

where U =[0;(.kzxk2 11';2] ok, n =[7l1' 77}—1] > Vip-iyaip-1y = Ipy U, ,

Me=ad and U, =[1; 0, ]

o against the alternative hypothesis,
kxk 1

kx
H,(h: I, =aA
where @ is the full rank kx% adjustment matrix and 4 is the full rank kx4

cointegrating matrix. The likelihood ratio non-causality test statistic is given by

max L[n,I1,,,0;X,,,X,]
I1n Hy(hh.h) 4.10)

and it follows an asymptotical y* distribution with kh—kh —kh, —hh, +kk,(P-1)

degrees of freedom.

Proof for Theorem 4.1:

Let us rewrite Equation (4.9) more explicitly as follows:
P-1
AX, = Zq,.Ax,_,. +T1,6X;p +Ep—@E;, ——©,E, ,, @11)
i=1

where 77, =—I+®, +---+®,, i=1..,P-1, 11, =—®,(1)=aA forsome .

First, let us partition X, as X, =(X7,,Xr,)" where k=k, +k, . Then, the MA
ixk,  Ixk,

representation of the partition can be written as

¥,(B) ‘Plz(B)]
T~

(=B =[‘P21<B) ¥,,(B)

and Equation (4.11) becomes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



116

P-1 . ) II 1—[
AX, = Z[’Tm ﬂlZ.l:}AXT—i +[ 11.46 lZ.AG:le_P +®QO3)ET _ (4.12)

L T I, 46 2.AG
By the results given in section 1.5, X, does not cause X, if ¥,,(B)=0. This means
that 7, ; =0 and I1,, ,, =0 in equation (4.12). In this framework, X, does not cause

X, if the hypothesis

Hy:Unv =0, UTLU,=0 (4.13)
holds where U =[:0]'(-k2><k2 Il'(z] ok, n =['71' '7;)-1] s Vicp-tyrp-1y =1p1 ®U

Mg=ad and U, =1, 0., ]'kxkl .

kxk
Following the results in Mosconi and Giannini (1992), we can show that for a

given reduced rank matrix I1 ,, =aA4’, U'TI ,;U, is equal to zero matrix if and only if
kxk

a=[U.a, |a,]and A=[4, |UA,] (4.14)
where a,, is k,; xh,, a, is kxh,, 4, is kxh; and 4,, is k, xh, with h=h, +h,.
Let’s partition @, =|a], aéZ]' and A =[A4], A£1]’ where a,, is k;xh,, @),
is k, xh,, A4,,1s k, xh, and A,; is k, xh,. This means that
a A 0
a=| % V) and 4=|" .
0 ay 4, Ay
Therefore,

I —aA'—-[a” a]Z][Al'l A£1i| [“11‘41'1 a”A51+a12A§2}
AG = = = .

0 an]| 0 4, 0 yy Ay

This implies that h, is rank(Il,;,, ) and h, is rank(Il,;,, ), and together they
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determine the distribution of unit roots for the whole system.
The null hypothesis of non-causality in the aggregate cointegrated systems

H,(h,h,,h,) defined by Mosconi and Giannini (1992) becomes
Hy(hh h,): UV =0, UM, U, =0, I, =aA,
and the alternative hypothesis is H,(h): II ,, =aA’ where a is the full rank kxh

adjustment matrix, and A4 is the full rank kx4 cointegrating matrix. By applying the
cointegration restrictions to both the null and the alternative hypotheses, a more efficient
test can be obtained.

Under the null hypothesis H,(h,h,,h,) , Equation (4.9) can be rewritten as

P-1
AX, = Z”iAXTbi +(U,a,A +a,A,UNX, .+ E.—OB)E . (4.15)

i=1

Let Z,, =[AX;]

kx1 ’

{4 f y
Z, =(AXT~1"'"AXT—P+1) k(P-x1 ° Zpr = [X “P]N ’

”:("l""’ﬂp—')kxk(r—l) ’ ®=(®llk ®QI")k><Qk and Elz(E'T-l E:W)Qkxl .
Then, Equation (4.15) becomes

Zy,=nZ,+U a A +a,A4,UNZ,, +E, -OF, (4.16)

N N
where U'nV =0 . Let also M, =N">"Z,Z, , (ij=0,1,P), N, =N"Y Z,E',
T=1

=1
(i=0,1,P) and R, =N"EE’, 3, =M, -M,M;M,,, (i,j=0.P), H, =8, —M, MK .,
A=0,P), Hgy =Ny —N M ¥,

Since the error terms E,’s follow a multivariate normal, the likelihood function

is proportional to
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- 1 ’ r r ! -
Q[ exp {——E(ZOT -nZ,—U,a, 4 +a,A,U)Z,, +OF) Q} x

4.17)
x(Zyr ~1Zyy — (U, 0, A + 2, AU Z, +OE)/ 2}
The estimation of the parameters does not easily reduce to an eigenvalue problem

which is discussed in Chapter 3. Here, we use an iterative algorithm to maximize the

likelihood function. The algorithm consists of the following steps:
1. Estimate the parameters @, and A,, by setting &,, =0, 21 =0, /=0, and 6 =0.
2. For the given values of @, =@, and A4,, = ;122 , estimate a,,, 4, 77, and ©.
3. For the given values of @, =&,,, 4 =A,, ©=0, and n=7, estimate a, and
A, .
4. Continue with steps 2 and 3 until convergence.

Let @, ,’i,jl,,.,dz,i,ﬁn,,.,ﬁ,.,(:'),. and Q, ; be the ith step estimates of the
corresponding  parameters.  The  iteration is  initialized by  setting
a,,=0, /AIU =0, /,=0 and ®, =0. Then Equation (4.16) becomes

Zy=a,AUZ, +E,.

The log-likelihood function of errors is given by
N L
L(0y, 4, Q) < N1 21} |- {Z tr[ng (Zoy ~ AU Zy ) Zog — 0, AU 2,1 }/2} .
T=t

For a fixed value A,,, &,(A,,) and Q,(A,,) are calculated as

@, (Azz) =3,pUA, (A;ZU SpplUA, )_1 (4.18)

and
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A ' ’ —1 ’
Q. (Ay) = Soo — SopUAy, (AU ppUAy, ) AU Sgp 4.19)

By following the same steps in Section 3.4.1, the maximum likelihood can be obtained by

choosing ;122,,. to be the first h, eigenvectors of (U "Sop o0 Sopl )(U "3ppU )“[. Then

the MLEs of a,, and Q,, becomes

d2.l = SOPUAQJ (4.20)
and
sz.l = 3oo - SopUlazz,iAéz,iU'Sop - 4.21)

The maximized likelihood is proportional to lf) i I-N/Z and is given by
L2 = |Sool[l = A, U'S0p Foo B0y Uy, |- 4.22)
By using the relationship between eigenvalues and eigenvectors, we obtain
U'S0pSuSo U, =U'SppUAL, T,
where T, ; denotes the diagonal matrix of ordered eigenvalues and ;122,1 is the matrix of
the corresponding eigenvectors. Hence, Equation (4.22) becomes

2N o~ p Tyrtes y
Lo = I“oo I ’I w, A U ‘SPPUAZZ,iTAn,,-

maxi

and since ;léz’iU '3 PPU/Alzz,i =1, , we have
L-ZIN = ISOO”I"z —TAzz,.'"

max,i

Therefore, the maximized likelihood function is given by

h,
L, =I9al [ Ja4 (4.23)

J=1
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A ~ A

where A, s are ordered eigenvalues 1>4;>..>4,>0 of
tew oy —lex res -1
(U'S0pS0' 30U )(U'SppU) -
The next step of the estimation is to find the MLEs of a;,,,,4,;,, and ém by

using the MLEs of @,; and 4,,; from the i-th step. Equation (4.16) now becomes

Z,-1,Z, =nZ,+U, a,AS, +E,—©E (4.24)

For fixed values of «,,, 4, and ©®, the maximum likelihood estimation consists

of a regression of Z,, —(U, @A +1L,U")Z,, +®F on Z,, giving equations
N N n N N
Z ZyZ = ”z ZZ;p+(U a4+ an')Z ZpyZi— QZ EZ; (4.25)
=1 r=1 =1 =1

N
where ZETZ{T =0. By using the product moment, matrices Equation (4.25) can be

poet
written as
M,, =M, + U, a, A +TLU"M,, -0, (4.26)
or
7=M,M; - (U, a, A +a,4,U M, M + QxE,M;‘ : 4.27)
Let’s define
R,=Z,-M,M|Z,,, (4.28)
Ry, =Z,,-M, M| Z,,, (4.29)
R, =E-R¥ M;Z_, (4.30)
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and also define 3, = R,R;, H, =R,R; (i,j=0,P), and Hy; = R R, . Then Equation

(4.25) becomes
R, = (U, a4 +11L,UR,, + E, -OR,. (4.31)
The log-likelihood function of E, condition on ﬁZRPT is given by
InL(a,,4,0,Q,,)x
—%lnpml - {tr[Q,le (ROT ~U,a, AR, -TL,R, +OR, - WﬁZRP,)x (4.32)

x(Rop ~U, @, ARy, ~T1, R, + OR, ~WIL,R,, ) /2]}

where W =Q; HJQEJ . The estimator of W is given by

Oln L(e .4 ’Q’QH ~ 1T ’ T LT < TV
( “a",l 1) ==3ppll; + U A3 ppIL +11, 3,10

—OH ,IT, + W (11,3,,11; ) =0
A A A~ N ~ " A A A -1
W =(3,,11, - U, @, A3, 1, — 11,5, 1T, + OH , IT; ) (11,3, 1T, ) . (4.33)
Replacing W by Equation (4.33) in the following function that is part of the log-
likelihood function given in Equation (4.32)
Ry, -U,a,AR,, _fI2RPT +OR, _Wﬁzkn

gives

g ! o~ o~ e~ -~
ROT -U 1& IAIRPT + ®RE - JOP‘SPP_fIZ RI’T +U LauAlJPP‘S

R, -GH,3 . R,

PP.Ii, PPIi,

(4.34)
" A PR BN
where 3, . =1II; (HZSH,H'Z) I1,.

P i,

By following Johansen and Juselius (1990), Equation (4.34) can be expressed in
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variables as

UR,-UU AR, +U,OR, U 3,3, . Ry +

ppil,” PT

R, -UOGH_ 3, - Ry,

'
+U U 0 A3, 3 Ppii,

PP I,

UR, -U'U,a, AR, +UOR,-U'S,3,, . Ry +

PPII,

+UU a A3pp3,, 5 -UOGH.3,. . R,y

PPIY, PT EP™pp L,

or

UR,-a AR, +UOR, -U 3,3
10, A3pp3 o Rpp ~U' OH .3

PPl’l

PPII, RPT +

(4.35)
RPT

PPIY,

UR,, +UGR,-U'S,S, . . R, —UOH,S

PPII,

R,, (4.36)

PPII,

because U,'U, =1, and U'U, =0. The likelihood function factors as

L(o)= H f(VE;o, H f(V.E,|VE,;0,) 4.37)

T=i
where @ =(,;,4,,0,Q;), o, =(a,,,4,Q;) and 0, =(0,Q;).

The factor of the likelihood function corresponding to the marginal distribution of

the variable in Equation (4.36) is given by

L(U'ET;a),‘2 ) |Quy[ " exp {———lz—x

N r
XZ(U'ROT +U'OR, ~U'3,3,, . Ry —U'@HE,,SPmZR,,,) 4x (4.38)
=1

(UR0T+U’®R ~U'S,p3,, + Ry U'@HEPJPPﬁzRPT)

PP. I'l

where Q,,, =U'Q_ U. The MLE of @ is calculated as
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onL(UE,;m, )

5.2
Fow o
+UU'S, 3

H,.-UU'3,,3,, . Hp +

=0U HI)E - UU'SDP‘S PRI, PP.I1,
pp'ﬁzsPPS pp I, H et UU'GH EP‘SPP.ﬂ, SI’PS

+UU'®H ,, -UU'®H ,3

i, H,, +

Since
~
PP 11, Srr i1, PP‘SPP 11,

=11, (11,3,,11; ) 11,3,00, (11,3,,0%; ) 1, =11, (11,311, )‘l 1i,,

dnL(UE;m, )

P =UUH,, - UU'JOPJPPH H, +UU'GH, -UU'GH .3, o, Hee =0.

Hence,

UU'(HOE =S0pSpp i, Hpe + OH g —®HEPSPP.ﬁ,HPE) =90.
The MLE of © is given by

O =(30pS s, How — Hog | H 1, (4.39)
where H . =H, ~H,3 pri, Hre -
When we replace @ in Equation (4.36) by ® in Equation (4.39), we have
URyy +U'30p 3y HopHpy o Ry ~UH  Ho o Ry ~U'3,3,, 5 Ry
~U'3,,3 P ﬁ2F,,‘,..sl,l,.ﬁzR,,T +UF,3 rr.ﬁzRPT‘

The maximum likelibood estimator of Q,,, is calculated as

o L(UE,;o, )
Ky

=0.
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oinL(VE;;,)

agzl}U
P, F, U+

-U'3,,3
+U'3,,3 FpU+U'3,3,, 4 Hy H;}m Hg3,, ;5 S,OU
F,3 U

“U'30p3pp 1, Hec H wE i, HeeH e i, HeolU =U'30p3pp 5, rrit,S
“U'3,p3,, o Fpp3 FrpSpp i i, FpU
“UFU-UHHy o He Hyy o He,S,, 0 SeU

+UH g Hyp o HogHyyp o HeU+UF,S,, o (Spe—Fpo)U
U'F;)P‘spr.ﬁz

+U'30,3 100 SepS ot (Sro = Fpo)U +U'S,, 3

PP. I'[

=U' (Jm 0(,)U—U(Sfm, —F(,,)S”‘ﬁZSPOU

rey
Fop3pp i3, 3peU +U'30p3pp 11

PPI1
Fe~
Sern, F,,3 e, S SpU +U'3,p3

PPII, rr I,

o o~
Fpp.3 i, S polU
e~ o~
F, PP"PP.ﬁ, "POU

o~
FI’P

‘Srr.ﬁz

PPIIL,
PPII, SPPS SI’OU
_U"SOPJPP.ﬁZF PPSPP.ﬁz (SPO —Fp, ) v
-U'3,,3 i, Fpp3 F,,3 rril, 3,U
+U'30PSPP.I=]2 F, PPSPP.ﬁZ SPPSPP i, (SPO —Fp, ) 4

'S0, FopS, o 3503, FopS, o 30U

pr1,

PPII,

0P~ PPIi, PPIY, rr n, PRI,
r o~ r o~
+tUFyp3,p s, (3po—Fpy)U+U 0rSpp i, FreSep iy Spcl
r o o~ o~ o~ r o~ o~
-U F;)P‘srr.ﬁz ‘SPPJPP.fIz (‘SPO - F PO )U - UE)I’JPP.ﬁz SPI’JPP.flz F PPJPP.ﬁz "POU

where Foo=H, Hy Hy,, , F,=HH_ H, , Fo=H,H, H, and

EE. H EE. H
F,=H,_H 1—2:5 a, Hg,.
O, =US. U (4.40)
where 3,5 =(3w ~Fu)~(3op —F,p)3pp 5, (3p0—Fp,) . The maximized likelihood
function is given by

L= ‘UW UI 'U (Sw —Foo)—(Sop - OP)Srrn (Spo— po)]U'| (4.41)

The other factor of the likelihood function corresponds to the conditional
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distribution of U’ E, |[U'E, and it is given by

-N/2 1 N ’ ’ ' & rex e
l v.U Ul CXP{_EZ(ULROT ~a, AR, +U OR, _UJ.‘SOP‘Sppn Ry +a, A "Prspp,ﬁ, R,r
T=l
UOH S, Ry~ W, (URyy + UBR, ~U'SyyS,, 0 Ryr ~U'SH 5, 1 Ry )

XQ;/llUL.U i(UiRor —a, ARy + UJ,.éRE -U isOPspp_ﬁz Rpr + IAI'SPPSPP_ﬂZ Ry —
T=]
~U8H,S,,; Ry ~W,(UR,; +UOR, ~U'S,, S, Ry ~UGH,,3,,; R..))
(4.42)
W, =Qquy, vy - The estimator of W, is found for fixed a;, and A4,.

olnL

1

=U' S U~ A3,,U +U,OH U -U' 3,3, ~ SpU

rrIY,
+@ A3 pp S, SplU ~UOH LS, o 3,,U
U,H,8U-a,AH,8'U+U 6H, 68U
U335, 5 HesOU + 2, A3,,3,, . H,OU-U6H,,S, . H, 68U

PPII, PP~ppii,
? o o o e o~ o~ ' A (33 o~
Ul‘s.,\s”_ﬁl‘s,,U —a"A,.s,,,J”‘ﬂz Spel + ULGIIE,J”,_I,lz Sl

L 4 (>3 (o o o f o= o~
U J”J"_ﬁ JppS \s,,',U+auAl‘s,,,,3‘l,},]l.1 3,,3”1.1 3l

~UOH,,3,, . 353,04 35U + U303, 4 Hu®U -2, 43,3, H,OU

ppII,
r ! o o~ o~ o~ (2
H,EG U—-UiSer3pp1,SerSpen H,EGU

PP 11,

+U'OH .3 e,
+@, 4303 Spp Sy HeOU-UOHL,S,, . 3,3, Hp,,®U
W U'SGU - W’,U'OHEoU +WU'S0pS 1 SpoU + WU'OH 3, 1 Spol
-W,UH, 8'U-W,U'6H, 68U +WU'S,S,,  H,6U
+WU'OH,S,, ;s Hp®U-WU'S,S,, ; SpU-WUOHLS,,; 3,,U
W U'S053,p5 Sp S, Srsl +WU'OH S, 1 303, 5 Spoll

-wU's,,3,, . H, OU-WUOH,3, . H,6'U

0P~ ppil, PPII,

+WU'3,,3,, 5 Spp S,y Hu®U+WUGHL,S,, . 3,3, H,,8U=0

where © = (So pSppr, Hpe —Hyg ) H_ . a, - After eliminating some matrices, we have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



126
U, (Sm "Foo)U_anAl' (Sro "Fro)U
_U_’I.SOPSyp_ﬂz (Spo - F, Po)U -U .'l_SﬂPspp_ﬂz F, Ppspp_m

o~ o~
Fpp3pp 13, 30U

3,U
PO

r o o e~ o~

+U 1Fo0pSpp g, Spel + @ A4S S0

+@y A8 3 1 (Spo—Fpo)U — @ AiFp 3, 5 30U

PP.IL,
_",IU'(SM_FN)U+",1U Sop3 rril, ("ro po)U

W U'S30,3,, 0 FpSpp Sell ~WUF,S,, 5 34U =0.

Then, the MLE of W, is given by

’ill = {U-'LSOOOU - lAl’ [I - SPPSPP,ﬁZ ](SPO + HPEé') U} ((j':‘m_él])nl (443)
where

S, é:(sm—Fw)—so,,smﬁz (Sro—Fro)=S0rSpps FrrSpm, Sro—FopSppy 3

PP~pp1i, PPII,~ PO
A A
’
=SB0~ JopSpp, Spo —OH 1 O

When we replace Wl in Equation (4.43) by W in

Uikor —& 1A1'Rn' + UJ.ORE - U_'LSOPSpp i, R, + allA'l‘sPP‘spp i, R, - U_'LGHEP S”_ﬁz R,
W, ( UR,; +U'6R, -U'S,,S,,; R, ~U'OH,,S,,; R, )

we obtain

U'R,, —a,AR,. +U' R, -U'3,,3, . Ry +a, A3, . R,,

PPI, PPII,

S ' v e e gLy
U\8H,,3,,; Ry —-U,3, U(U'S, U) UR, -U,3, U(U'S,U) UBR,+

S, U(USU) U3, 5 Ry +ULS, U(U'S, U) UGH,,S,, . Ryp +
@ A 1-5,3,, . |(Sr+ Hue®')U}(U'S, U) URy +
ra, A [l ~Sp S, |(Sro + Hps®) U} (U3, ,U)" U'OR, -
_a”A,'[I ~SnSprs, |(Sro + Hee®)UHU'S,, U US55 Rer - o
o, A [ S ](3,0 +H,©) U} (U'3,,.U) U'SH,,S,, ; Ry,
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The derivative of log-likelihood with respect to «,, is written as

U 30 Spp, Ser + UiOH S,y Spph
Ui 30rSpi, SeeSprn, Sreh ~UOH 3,0 35,3, Sppd
U3, sU(U'S 0, sU) U'S113,p 5 S
U.3,U(U'S,U) USH,,S,, 3,4,

AU S U(U'S05U) U'S3 S SppSpm s Sery
W3 U(U'S 5 oU) UBH S, 1 Spp3 s Spoh
U,FU(U'S,0U) U (Fop + OH [ 1-3,, 5, |4

+UOH U (U'S,, U) U'(3, +6H,, ) I-3,,, 3, |4

U303y SV (U3, 6U) U'(3,p +OH,, )[1 -, 3,,,,]4

PPII,

U.6H,,3,,; 5, U(U'S,,U) U'(3,, +OH,, )[1 =S, S |4
U3, U (U3 oU) US(U(U'S,U) U (3o +8H, ) 1=, 5,0 |4,
U 3,,U(U'S,U) USH,U(U'S,U) U(3,, +6H,, ) I-3,,, 5 |4

U3, U(U'S, U) U'S,,S,, 5 Seol

PPI

X(U'S,,6U) U'(Sop +OH gy )| I-3,, 5y |4

U3, U(U'S, JU) UH,,S,, , 3,Ux
X(U'SsU) U (Sop + O gy [ 1=, 5pn |4,
U Ho ®U(U'S,,U) U'(3, +OH )[1 =S Ser ]A,
+UOH OV (U3, U) U'(30p +OHg [ 1-3,,, 50 |4
U S0p Sy Hu®U(U'S, U) U (3, +OH, ) 13,5 3y 4
~UOH S, Hu®'U (U3, U) U (3, +OH ) 1-3,, 1 3 |4
U3, U(U'S,U) UH,&Ux

%(U'3,00) U'(Fop + OH g ) 1-3,, Sy | 4
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U B33y, SpoU (U3 U) U'(30p +OH G ) 1-3,,, S, |

r & ’ o 3
~U 6H 3, 35U (U'S,U) U'(30 +9H£r)[1 Sern,3 ]4
+U3 JRUVRL PPII, SI’I’SM.I‘Jz Sl x

X(U'SqU) U (Top + OH gy ) 1= 5005, Sie |4,

o~ o~
+U} GI‘IE‘,JM,n Spp3,, 5 IpU X

X(U'30oU) U'(3or +OH ) 1-3,,5 30 |4

U3, U(U'S, U) US55 Saol

PP. II
X(U'3,0U) U'(Sop +OH 5y )| 1-3, Sy |4

U3, U(U'S, o U) U'OH S, 3pU

X(U'S0oU) U'(Sop +OH g | 1-5,, Sy |4

4 e o~ o~ o~ e o1
—Ulsoo'éU(U \sm'éU) U'S0pBpp 1. SopSppiy, Spol

X(U'3oU) U (Top +OH gy ) 1=, 5, Spr | 4

U3 U(U"' ) U’éHE,S”u Sp S pry, Irol ¥
X(U'S,06U) U'(Sop +OH gy | 1= 51 |4
U3, U( ) U'6H ,,O'U x
(U'3,,s0)" U'(3o0 éHE,)[I— S, Sre |4

+U,3, U(U'S, U) U'S,, S, HpO'Ux
X(U'S06U) U (Fop + OB i3 ) I =55 Se |4,
W3, U(U'S,U) USH,, S, H,&Ux
X(U'3oU) U (Sop + OH g3 ) 1= 3y, 31 |4
U 50p3 py HeOU (U3, U) U (3, + OB ) -5, T |
~U\OH 3, Hu®U(U'S,U) U(Sop+OHp ) 1-3,,5 5 |
TU 3003 B3 H,,,_-@ Ux

PPIY, PRI,

X(U'S o) U (Fop + OH gy | 1= 5,1y 5 Sie |

pril,
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+UOH 3, 0 SppS e HppO'Ux

X(U'S,0U) " U'(Fop + OH s ) 1 -5 Sy |
WS U (U'S 0 oU) U'Sp3,p 0 Hepe®'Ux
(U'3, ) U'(3,, +6H,, )[1 ~Fpp 3,,,]

U3, U(U'S,4U) U'H,,S,,  H,OUx

x(U'S,oU) U'(3s +OH,, )[ ,mzs,,]
U3 U(U'S U) U'S003 00 SppS ppy Hps®'U

Spel) U'(Jop +OH,, )[1 e, Sor |

U3, éU(U'Sw sU) UGH S, 3,,3,,, Hp®'Ux

x(U'S,,U) U'(3,, +6H,, )[1 =Sy S |
+0, A3, A,
_all‘ﬁsﬁsppj]z Sppy
@A 1-315,,5 |(Sre+ He® )U(U'S,5U) US4

_a"A;[l o A ](3,0 +H,®)U(U'S, U) USH,, 4

+a,,A;[1 < M ](3,0 +H®)U(U'S, U) U'S,S, ; Spi,
@, A I-503,p s |(See+ Hp®)U(U'S, 0) USH,,S
—all“‘l'srrsppn ‘SIPAI

o 1A13rr Spp,u2 Ser Sn,ﬁ, Sepd,

Sppd,

4@, A I- 503, |(Sro+ He YU (U'S, U) US55 S
0, [ 1-5303,,5 |(Sro+ Hee®)U(U'S,,,U) USH,,S,, ; Sppd
0y [ T-FpS s, |(Sro + He®)U(U'S,00) U'S0sSpp SerSpm, Serh

——a”Al'[I 3 A ](3,0 +H @) U(U'S, U) UBH,,S, ; 303, Spd

2, 45,0 (U'S,, JU) U (S0 +OH g ) I3, Sr |4
O AT 1S SV (U3, U) U (S +eHE,,)[1 3y, 3 ]A,
10, A 1=,y |(Spo+ Hp®)U (U3, ,U) U'S,Ux

X(U'SoU) U (Top +OH oy )| 1-3,,5 Se |4,
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+a,,A;[1 -3 3 ](3,0 +Hp & )U(U'S,, U) UH U
(U3, oU) U'(3,p +OH,, )[1 -3, 3,,],4,
@ A 1=, |(Spo+ Hpe® JU(U'3,,U) U35, SpoU
U'(3op +OHg ) 1-3,,, 3p |4
@ A 1-5p5,, 5 |(Sro+ Hu® )U(U'S(U) UGH S, S
(U3, U) U'(Sop +OH ) 1-3,,5 3er |4

—~a, AH U (U'S, U) U(3,p +6H ) 1-53,,, 3,

x(U'3,5U)
ol X

, 4
H,&U(U'S, U) U'(3,, +6H,, )[ ]A,
3erSeei, ](SP0+HPE6') ( Swé )

3

x(U'3,6U) U'(3op +OH, ) I-3

+al 1141'3PP3

+ay A [

PPlI I’Pl]

" UH,O'Ux

14,
U'6H, 6'Ux

pPIL, PP |

-1

4, [ I-33,p 5 |(Seo+ Heb)U(U'S,,,U)

X(U'S,oU) U (Sop + OB )| 1-3

PPII, PP B
—, lAl’[I = SerSpriy, ](S’ ot Hp, Eé')U(U'S"QéU) USor

-3, .3, ]

X(U'SoU) U (Fop + OH )|
€ 1Al'[1 ~Ser Srr.ﬁ, ](S’ ot H, Eé’) U(U'Swéu)

wol) U'(3,, +OH,, ) :1 ~S i

pPII,

U'éH,,

x ( Us3
@y A S i Sl (U U) U'(Fp + éHE,)[I
1, AlS,p T 3,,U x

3 o~
‘SPP‘srp.ﬁz

I—-

PP,
X(U'30oU) " U'(3op + OH )|

|(Sp + H&)U(US

o~ o~

‘srpn ‘SPP_
U) U's,, S
4

-~

<3

A

3o

00.8 PPII,

f
+a, A [I JH,J”H

X(U'S 0o U) U (3o +OH 5 ) 13,5 S
+a, 4| 13,3, |(Sp0 + Hu®)U(U'S, U) UGH,,
X(U'3,,40) " U(Sop +OH ) 1-3,,, 3

PPI,

PP | A‘l
v)'U's,,3,

PPIL,

o~

0y A 1-505 5 |(Sre + Hu®)U(U'S, U .

X(U'SpsU) U'(Sop +OH )
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0y 4| =303 |(Sro+ Hue® U (U3 U) UOH 3, 30,5 Fpul

X(U'S0oU) U'(Sup +OH [ 1-3,, 3 |4,

O, A3 Hp®U(U'S, U) U (3, +6H,, )[1 =30 S [ Ay

pPIL,

—al IA'I'SPP Spp,[‘l2 SPP Spp.ﬂz HPEQ'U x

(U'S0oU) U'(Sup +OH g ) 1-3,, 5. 51 | 4,

2y [ T-3p 50, |(Sro + Hee® )U(U'S00oU)  U'S0p3,p 0 HpsO'U
X(U'SoU) U'(30p +OH )[1 S T ]A,
ey A I-3pS s |(Sre+ Hu®)U(U'S,,U) UHL,S,, ; HOUx

X(U'S0oU) U'(Sup +OH ey ) 1-3, 5 S | 4,
+a, Al [1 S }(s,,, +H, &) U(U'S, sU) U'S4pS pp s, Sre S ey, Hre®'U

PP,

(U3, )" U'(S,,+éHE,)[1 Sy, Sor |4

T ~ppil,

ra, Al [1 S0 S, |(Sre+ Hpe®)U(U'S,0U) UHL,S,,  F0pS,p HprO'Ux

X(U'SpgU) U'(S0p +OH, ) 1=, Spp |4, =0.

By using the relations

and

the derivative can be simplified as
-U; (Sor +OH g, )[I ~Sern, SPP]AI

U S0 U(U'S,0U) U'(Sep +OH ) 1=, S |4,

Al 1305, (Spo+ Hu®)U(U'S, ) U(Sp +OH,, ) 1-3,,,, Spp |4, =0.
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Hence, the MLE of a,, for fixed A, is given by

6, (4)=U.3,, 44, (43,,44,) (4.45)
where
Sure =(Sur +OH ) I-3,,, 5, |-
06U (U'SpooU) U’ (Fop +OH ) 1=, S |
and

o~ _ e e o~ _
Sppe = (SPP ‘SPP‘Spp_f]z‘sPP)

[ 1-30S0ms, (S + Hee® YU (U3, U) U (34p +OH ) I -3, 5, ]
The MLE of Q, ,, ,, is given as

~ o~ ' fo~ -1,
Qp v =U,3U, —U 34 (Al "pp_éA1) A3,,.U,
+U H, OU, -U.3.,3,, . 3pU, ~U.3,3.. Hoy®U,

PPIL,

’ [ [ Iy -1 o
+UJ-3 OPJpr.fl, ‘SPPAl (AI ‘;rr,éAl ) Al Jro.éUl
U3, U(U'3, U) U'S, U, ~UH,&U(U'3, U) US, U,

PPIL,

rew e -~ - L — ~ = A oo -1
U1 30p S, SpU (U3 sU) U3, GU, + U S0pSpp i Hpe® U(U's, U) U'S, U,

+U 3 U(U'S,U) U (S, +OH,, )[1 = Sppt, Srr |4 (A5 e 4) AIS,05U,
+UH, 0U(U'3, U) U3, +8H,, )[1 =S S ]Al (43,064)" AS,05U.

V130530015, 300U (U'So5U) U (Sop + OHR, ) 1-3,, 4 Sp | A4, (43,5 44)" 43,050,

Ui S0 S pp 1 He®U(U'S,, U) U'(3, +OH,, )[ 1 - sﬂ.ﬁzs,,]A, (43,,54) AS,.5U.
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H,8'U,

PPII,

? o 1 rew o o~ v ~1 fo
U3, A (A 3 pp o h ) A,\s,,,,‘s”ﬂ;s,,ou(u sméU) U3, U,

U3, oA (AT o) ASpS
U3, (A5 5A4) A3yl (U'S,5U) U
x(so,. +OH L ) 1-3,,5 S | 4,(43,,44) " 43,40,
U134 (A 4) AR U(U'S,,0) U
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WS, oA (A3, 04) ASpS s S U (U'S,, .U)’ U’
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)
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1 or.éAl (A{Srr,éAl
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UiéH EOU 1 U.’LéH EPAl (Anls pp_éAl )_] Al’ Sro.éUl

+UOH OV, U OH,,3, . 3, U, ~U.6H,,3,, . H,8'U,

+U léH EPSPP.I’IZ Serdh (Ax'spp,éA\ ) A3,V
-UiéHEOU(U'SméU)_I U'3, U, -U.8H  6U(U'3, .U)'l U3, .U,
+UOH,,S H,&U(U'S, JU) US, U,

PPII,

prit, Sl (U'SooU) U'S, U, +U6H S
AULOH U (U, U) U (Syp + OH g [ 1=, Spp |4 (43, 44) " 415,050
+UBH OV (U'S, U) U'(35p +OH, ) -3, Sor |4 (43,,44) 43,,,U,
U OH 1,3y Spol (U3, oU) U (Sop + OH 1 ) 13 Sw | 4 (45 e 4) 43,050

~U.8H,,3,,. Hp®U(U'S, U) U3, + éHE,,)[I - smﬂzs,,,,]A, (43,5 54) AU,
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“Ui30p3pp 11, SeolUL + U 3053 pp iy S (A4S A) A U,

PPO P06
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U304 (A.' o) A3, Sorh (A3 5A) A4S0l
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~U;0H 3, 353
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x( o +éHE,,)[ Seeit, ] SBpro) A3p06U.
+UOH 3, 0 SppS oo 3p U(U'SméU) U'x

PP,

+U OH LS, . 3,3 .H,Eé'U Us_ .
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("or +6H )[1 Srr.ﬁ, SPP]AI (A;Srr.éAl )_l Al'sro_éul
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’ v -1 v
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ro6 1
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Po® L

WS, U(U'S, U U'S,S, 0 He®U(U'S, JU) U

00.6 PPII,
-1

X(Sop + OH gp ) 1 =501, Frr |4 (413,,44) " 413,050,

U3, U(U'S, U) USHU,

00.6
’ 7o~ =1 1A ’ -1 ’
+U, 3, éU(U ,sm_éU) U'6H, A, (Al 3";,4) A3, U,
-U,3,,U(U'3, V) UeH,éU,

-1

+U1S, U(U'S,oU) U'OH S, SpU,
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U3, (U3, U) UH LS, 3,,U(U3,,U) U3, U,
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U U (U'S, U) USH,U(U'S, U) U'x
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1t o 1o -1 tew o o~
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4 7 -1 r P o~ o~ -1 o~
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PPI1,
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' ' oA ~ o~
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X(Spo + Hpp® )U(U'S, U) U303, Sppd (43,,54) 43,,5U,
U3, 64 (A SrpeA) A,[I SerSppa, ]
(

x(Spo + Hp®')U(
(

UL

P0G

v(U's U's,S

ol H ,EO'U |

PPII,
U3 o (A 54 ) [I Ser3pp s, ]
X(Spy + Hp® VU (U'S 0 U) U043 00 5 SerSppy Seoll
U3, 04 (A,S” oAl) [1 SerSeen, ]X
X(Spo + Hp®)U(U'S, U) US54 S50, Serd (43,,04) 413,050,
X(Spo+ Hp®)U(U'S,,U) U'S,,3,, 35U (U'S,,,U) U'S, U,
WS, A (A3,,44)" A,'[I S . ]x
X(Spo + Hpg® )U(U'S,oU) U303y 395 Hpe®'U,
13,04 (43, 04) A 1-33,4,
U300 A (43, 04) A[T-3p3,5, |
X(3po + Hy® U (U'3, U) U3, 3,0 Hpg®U(U'3,,U) U'S, U,
U3, 04 (AS,s4) A [1 T ]x

%(Spo + Hp®)U(U'S, U) U'S,03, 5 ISy Spll (U'S0U) U'S 0 0U,
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U3, 04 (43,44 )—] A:'[’ =33y, ] x
x(Sm +H é')U(U Sw_éU) U'SopS snsﬂ_ﬁzsmu(v'sw_éu)“ U's, U

U3, 0 (A4S peA) A,’[I R ](3,0 +H, &) U(U'S,U) U'x

SorSppn,S Rl (U3 U)_l v ’(Sor +6H,, )[1 ~3prn, Srr]”- (43,554 )_l A poel.
Sore i (A rrat) AL T-30S s, |¥(Sro+ Ho®)U(U'S,,U) U
*BorSppi, H =OU(U .eU)*l U'(Sor +6H ){I Serit,Se ]A, (43,504 ) A43,,4U.
U3, o (43,,04) A[1-3043,,, %(Sro+ HA®)U (U3, U) U, x
X3 3,5, 5,

priL,~ PP ppi,

U(U'sm_év)‘l U'(3, +6H,, )[1 ~Spn s,,]A, (43,504) AS,aU.
A3, 0A) A;[ 1-3,3,,, ](3,,0 + H,Eé’)U(U'Sw_éU)“ U'S0p3 pp1, %
3”

]
XS pp Sy Hp®U(U'S, U) " U 30,+6H”)[1—s”.ﬁ2 ]A,(A,’S”.éA,)—' A3, U

3, oA (43, 54) A[1-303,,,, ]
x(3m+H,,EO')U(U'3 .U) UeH,S,,, 3,,,4,(14;3”6,4,) A3, U,
U134 (43,,54) A[1-3,3,,, |x
x(3p0 + H,EO')U(U'SW&U) U6H,,3,, H,8'U,
UL, o (D0 ) A1 =T3Sy, [

x(Spo + Hpe®)U(U'S, U) UGH,,S,,

U3, 04 (A43,054) A 13,3

PP. l'l

L S /7
X(Spo + H,,Eé)')U(U'SW.,U)‘l USH,,S,, SpS,s Spd (4
U3, oA (4300 eA) A1 =303,y |
x(3p, + He®)U(U'S,, U) UOH,, S, SppSpp Hu®'U,
+U, 130p 64 (Al'spr.éAl )-l % [I - SPPSPP.ﬁ, ]X

X(Spo + Hep®' )U(U'S, U) UGH,,S,, ; 3,,U(U'3, U) U'S, U

»94) A3,06U.
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U S oA (43 o) A[T-303,,, ¥

oP 6 PPO

x(Spo+ Hp® JU(U'S,, U) USH S, Hp®U(U'S, V) U'S, U,

rrii,
U3, oA (45 o) A[T-30S . |

x(3po +H,Eé')U(U'smU)“ UeH 3, 3,53, nzfs,oU(U'SméU)~l U's, U,
U3, 5 (43,0 04) A 1-305,,5 |x

X(Jpo + Hp®)U(U'S,U) USH,,S,, 3,3, Hy®U(U'S,U) ' U'S

PP.

oo.éUJ-
U354 (A3 o) A 13030, |0+ Hes®)U ('S, 0) 0"

OH 3, . S, U(U'S, U) U'(Sop+9HEp)[1 S"ﬁ,srr] (A3 ) AS

P A 1= |(Sre+ Ha® )U(U'SwéU) U'x

x8H 1,3, ; Hp®U(U'S, U) U'(S, + ‘HE,)[I 3,,_,.]23,,],4 (43,,54) AS,..U.

PPI,

U,

POG

~

Sl (U'S,0oU) U'(Sop +OH o )| I-F 0y S |4 (43,,44) 43,0,
U3, A (43, 44) A 1-305 4 |(Sp+ Hu®)U(U'S,U) USHLS,, ; Spx

X3 pp 0, Hre®U(U'S o oU) U (Sop +OH o, ) 1=, Soe | A (45,064) 435,050

U3, A (A3, 0A) A T-303 5 [(Sro+ Hu)U(U'S, U) UBH LS, S, x
PO

After some simplification, the MLE of Q,, , , is given by

Qyy v (A)=USpy U, -U.3,, 54 (A3, A ) A3, U, (4.46)

PPO
where

Soo.vl =U 30U, U 3,3 Spl L —

Pl’l'l
-U6H,, . 6V, -U3, U(US,U) US,.U,.
By following the steps given in Section 3.4.1, the MLE of A4, ;1, i1 > are the first h;
eigenvectors of
S 06U (UiSu0,Us) UiSpeSme-

Finally, by taking into account the restriction U’V =0 for the given values of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyww.manaraa.com



144
&) ,0s Ass Gy, and A,,, (i+1)th step estimate for 7 is derived by the Lagrangian

function
- N — > > ' Ll 24
lnL(”’QE":“) o« —?m|QE| —{——tr[ﬂbf (Zo _”Zl)(Z() _”ZI) ]/2}—”[‘5 v ”V]
(4.47)
where Z, = Z, —(U,a, A +6,A,U)Z, +OF and E is a matrix Lagrange multipliers

(Spanos, 1986). Therefore,

OlnL(n,Q,.E) _ {_[Q;; (2,2, nle;)]} _UEV'=0, (4.48)
on
olnL(7,Q,.E) N 11, - . i
o0, Ty (Zo"ﬂZ1)(Zo"7lzl) =0, (4.49)
611114(;];95,5) =-UnV =0. (4.50)

From Equation (4.48) we can obtain
[ (F-n)(2.2)]|=UEV' (4.51)
where 7 = Z,2](2,Z])" . Pre-multiplying both sides of Equation (4.51) by Q,, gives
[(7-n)(2.2))]=Q,UusV", (4.52)
and pre-multiplying both sides of Equation (4.52) by U’
[(Uh-Un)(2,2)]=UQUEV". (4.53)
By post-multiplying by (Z,2;)" , we can obtain
[(Uh-Un)]=U'QUEV'(2,2))". (4.54)

Equation (4.54) can be written as
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[(weu) Wwi-vn)|=avi(zz)" (4.55)

Post-multiplying both sides of Equation (4.55) by ¥V’

(o) wiv-vw)|=av(zz)'v. (4.56)
By Equation (4.50)
(UQUY (UW)=EV'(2,Z)'V. 4.57)

Hence, the Lagrange multiplier is given by
2=(U'QU) (Uw)(v'(Z.2) V)_1 . (4.58)
Replacing Equation (4.58) in Equation (4.52) gives
[(5-n)(z.2)]=u(UeU) Uw)(v(22)" V)q V.
So, the MLE of 7 under the restriction U'pl =0 is given by
T = #-Q,U(UQU) W) v(zz)'v) vi(zz)' (4.59)

~

where Q, = %;[(ZO -nZ, )(20 - ﬁZl) ] The MLE of the error variance matrix is

- . 1. . NN
QE,:’H =Q, +']§,“(77i+1 "ﬂ)(szl)(ﬂm —ﬂ) (4.60)

where O, =U. (3,1 ~Fpoq JU. ~UL(S,pn, ~Fopss, ) 44 (Spon, ~Fron, U (see Richard

opfL, 0PI,

(1979)).

The maximized likelihood is proportional to lfz Eid "
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IQE,iH

o Houtwoa) wisay ) vy

x(Z, Z;)(QEU(U’QEu)" uw)(v'(zz) V)—' Vi(z.Z )—*) l

Qg 1] = |2 I+1—i,—(v(v'éEU)” ) (v'(zz)'v) viu(vou) v, l
|9 ] = || 1+ —]-lv—(V'ﬁ'U(D"f;EU)-1 vd,u(Uo,0) (W) V(22 V)_l)

lﬁE,iﬂ

i (vivwas) vy eayv))

Therefore, the maximized likelihood is given by

Limin =|U3 (Smss, ~Foos, )Us

max,i+l —

4.61)

II - ;1' (Sl’o.ﬁ2 -F, PO, )U_L (U'L (Soo.ﬁ2 -F, 0011, )UL )—1 Ul (Sonﬁz - E)P.flz )“il,i+l

1,i+1

I+ 71\7(;/';}'0(U'szU)‘1 vy (vi(z.z)" V)—l )!

By using the relationship between eigenvalues and eigenvectors, we obtain

-1 R
o~ [ 1 —
(‘sl'o.ﬁ2 -F, POty )UL (Ul (JOO.fIZ - F(')o.fl2 )UL) U, (301’.1‘12 - FoP.r‘[2 ) Li+l T
= (Srp.ﬁz ~F PP, )Al,i+1TA1,m
where T, denotes the diagonal matrix of ordered eigenvalues and /All’,.ﬂ is the matrix

of the corresponding eigenvectors. Hence Equation (4.61) given as

2N _
Lmax,i+l -

A' o~ y
1, Al,i+1("rp.ﬁz F, pp.ﬁz)Al,t+lTA,,-+l

t | e~
1 (‘SOO.fIZ F, 00.11, )Ul

I+—;I-(V'ﬁ'U(U'SA2EU )'v 'ﬁV(V'(ZIZ{)"lV)*I )l
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. - v ~
and since 4, (3 eri, ~ Fri, )Au+1 =1,,

L-Z/N

max,i+1

Ui (300.1'12 - Foo,fl, )U-L

[r-,|

I+ %(V’ﬁ’U(U'ﬁEU)-I U'ﬁV(V'(Z,z;)‘l V)_l)l .

Therefore, the maximized likelihood function is given by

B
L-xi/:lx,iﬂ =|U] (Soo‘ﬁz - I'?oovf_[2 )U_L {H (1')‘;;+1 )} X
= (4.62)
o -1 .
x 1+%(V'ﬁ'U(U'QEU) v (v'(2.2)'v) )l
where A s 8 are ordered  eigenvalues 1> A;m >..> /i:k’m >0 of

-1 ~1
o~ r [~ t e o~
(‘spo.ﬁz —F, PO, )U-L (Ul (‘soo.ﬁZ ~F, 0011, )Ui) U, (‘sop,ﬁz ~F oPIi, )(‘Spp.ﬁz —F, PP, ) .
Given a,,;,,4 ;> N, and ®,,, , (i+2)-th step estimates for a,;,,,4y;,,

and sz 112 are obtained from the following conditional likelihood function

1Y A 007 N o T N i 3 .
( i+2 a;z, 2552 2) o _'_z—ln'QE,HZ _{H[QE{M (2, -7Z,-1,Z,, -
—a2A2;2U'ZPT +éE—V(fIIZPT _éE - ﬁer)(Zor "ﬁZn "ﬁxzpr - (4.63)

0 ALUZ y +OE -V (11,Z,, ~OE-2,;) /2
where 1, =U @, ,4], and V=0Q £is2mQEs - The analysis of Equation (4.61) is
similar to the reduced rank regression of Z,, +a,A,U'Z,, on fZ,+11,Z,, -OF
corrected for V(ﬁZlT +11,Z,, —~OFE ) . Therefore, the estimator of V is calculated for a

fixed @, and A4,, as
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ol L (anz s Ay 1i2s Qé,nz )
ov
HILM,, 7 ~TEM L1 + 1R .0 + @, A UM 17 — @, A UM, LT+
+0, AU 5y ——OR 7 —OR L, IT) + O, 0 +
+V (M, 7~ M, IT, + 77, O + T M, ~ LM, 1T + TT,R 0"

= "Monﬁ’ - Mopflll + NOEQ' + ﬁMnﬁ' - ﬁMleI; + ﬁNus@' +

—ON '~ OR , T +O8 ;') = 0
@ (az ’ Azz) = {Mmﬁ’ - Mopﬁ; - NOEé' + azAézul (Mmﬁ' - Mppﬁ; + NPE(:)l )} -1

(4.64)

where

Z= (ﬁMnﬁ' - ﬁMlPﬁ; + ﬁNwé' + ﬁleﬁ' - ﬁleﬁ; + ﬂlxmél -
—ON 7~ OR , IT; +ON,,©)

Replacing V by Equation (4.64) the following function which is the part of the log-
likelihood function given in Equation (4.63)
Zyr ~ 12y ~YN,Z,; @, AU Z py +OE —V (112, + 11,2, —OF )
gives
Ror —a, A, U'Rpy (4.65)
where Ror = Zyp ~(Moyii ~ M, 1T, -8,,6')27 (72, +11,Z,, ~OE) and
Rpp = Zpp —(Mpfi ~MpplT; +8,0' )27 (72, +11,2Z,, -©E).
For a fixed A,,, the MLE of «, is obtained as

olnL (ai+2 I WYTON 0 o )

=Ry RppUAy, + @y A U R R Ay, =0

oa,
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Lol ’ ’ ’, [ -1
a2.i+2 (A22) = mOTERPTUAn (A22U SR’PTiRPT(]‘AZZ) . (466)

By replacing @, by &, ,,(A4y,) in Equation (4.65), we obtain
4 r 14 ! -1 7 {{
Rop =Ry Ry UAy, (AzzU mPTinPTUAn) AU Ry
For a fixed A,,,the MLE of Q,,, can be calculated as

Oln L(ai+2 s 4Ay) j+20 QE,i+2 )
aQE,i-i-Z

f f ¥ t 1 ({ r -1
xApU'R pr Ry + Ry RyprUA,, (A22U “RPTmI'TUAZZ) x
[4 f [4 1 1/ 4 —1 ! 1, [ 4
XA URp R UA), (A22U SRPTERPTUAZZ) A UR, R, =0.

H 4 4 r 1 —l
=RorRor — 2R, RprUAy (AzzU ‘anHUAzz) X

Hence, the MLE of Q,,,, for a fixed value of A4,, is given by

A ! 4 ’ 1 14 -1 ! £ r

QE,i+2 = SROTSROT - SROTSRPTUAZZ (AzzU ERPTSRPTUAQ) A22U 9{Minor . (4-67)
By following the steps given in Section 3.4.1, the MLE of A4,,, ;122’”2 are the first A,

eigenvectors of U'R,, R, (R, Ry )" Ry R (U'R,, R, U)” . The maximized

N72
™ Therefore, the maximized likelihood is given by

likelihood is proportional to lfl Es2

- ’ pY; " ’ ¢+ 7l ¢ “~
Loa =‘§Rormor| I _A22,i+lU RprRor (mormor) EROTmPTUAZZ,iH . (4.68)

max,i+2

By using the relationship between eigenvalues and eigenvectors, we obtain

1{ L4 14 -1 L4 ~ £ 14 p
v mPTEROT (mOTsnOT) EROTERPTUAzz =U mPTmPTUAZZ,HZT

S+l Apin

where T, denotes the diagonal matrix of ordered eigenvalues and /Aizz,m is the matrix
of the corresponding eigenvectors. Hence, Equation (4.61) becomes

2N _ [ ot 1 12 y
Lmax,i+2 = lmormw”] ‘Azz,mU mPTmPTUAZZ,HZTAu_M
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and since ;1;2 U '%PTER;,TU/ZZZ,M =1,

Lonis = ‘SROTER:)T

max,i+2

P—T%

L i+2

Therefore, the maximized likelihood function is given by

L3
L-;ij+2 = Imormgrl I—[ (1-h50) (4.69)
=1
where /{jﬁz ’s are ordered eigenvalues 1> ﬂlm >..> ﬂ;,m >0 of

(/ 4 7 -1 ! (7 4 -1
UR R (RorRir) RorRpU (U'R R U)
To be able to obtain the MLEs of all the parameters, one should obtain Equations

(4.62) and (4.68) until the difference between the values in equations are very small.

The likelihood ratio non-causality test statistic is given by

__21n H%M)L[”’HAG’@;XD'",XN]
maXL[r]’nAG’e;Xv"'sXN]

Hy(h)

(4.70)

where HI(I;}%X;.Z)L[”’H 16X Xy ] is obtained by  using  the

ay ;A 1,0, 4, ,,7;,0,; and Q;; with i being chosen in a way that convergence

criterion succeeded. The maximized likelihood function under the alternative hypothesis

H,:M,(h)=ad’, ?%L[U,HAG,Q;XI,---,XN] is obtained in Section 3.4.1, Equation

(3.46). Based on the results provided in Johansen-Juselius (1990) for their Hg hypothesis,
the test statistic is asymptotically y* distributed. Since the derivation of the degrees of

freedlom is based on the number of free parameters in aA' , it is equal to

kh—k b, — k,h, — h, +kk,(P—1) as shown in Mosconi and Giannini (1992, p.416).
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4.3.1 A Simulation Study

After temporal aggregation, the structure of the error correction model has a
different form. The ECM-based non-causality tests in cointegrated systems should not be
used without considering this fact. To see the effect of temporal aggregation on this test,

we perform a simulation study. We choose a two-dimensional cointegrated VAR(1)

1.0 0.0 1.0 05
model for the basic series with parameters ¢ = and Q= . This
04 0.0 05 1.0

model is chosen because the system is cointegrated. Although the first variable causes
the second one, the second variable does not cause the first one. So, we can see the test
results for both situations.

Before the simulation study, let’s look at the effect of aggregation on the causality

conditions. Consider the following 2-dimensional cointegrated VAR(1) process:

I-gB)x, =| B O | @4.71)
04B 1] x,

1.0 0.5]

where a, is white noise with mean vector 0 and the covariance matrix Q = [ 05 1.0

Then, the Wold‘representation of (4.71) is given by

(1-Byx, = (I + ¥ B)a,,

lPll ‘PIZ

where ¥, =
\P21 ‘PZZ

0 O
]= [ 04 I:l. By Proposition 2.3, the aggregate series has the

following form

(1-B)X, =(I-©B)E,, 4.72)

where E, is a sequence of random variables with mean vector 0 and the covariance
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matrix Qg . For m = 3, we obtain the moving average parameter matrix as

9, ©,]| [-0.189 -0.074
O = =
'le, ©,]| |-0476 0971

] and covariance matrix of aggregates is

18.09 7.84
E =

7 84 5.66) . By Liitkepohl (1991), the x,, does not cause x;, because

¥, =0. However, for the aggregates ®, =-0.074, therefore X,, does cause X, .

Now, lets look at results of our modified test for non-causality in cointegrated systems
using aggregates in order to see how well our test perform.

First, we generate a sample of size 600 and obtain its m™ order aggregates for
various m. We then apply our modified test for non-causality with cointegration to this
data set. The results are shown in Table 4.2. The results indicate that the modified
statistic works well. Temporal aggregation indeed changes non-causal relationship into a

causal one even when there is cointegration in the system.

4.4 An Empirical Example

As a real life example, the U.S. monthly wage and salary disbursements (WAGE)
and real personal consumption expenditures (PCE) are selected from January 1976 to
December 2000. The sources of the data are the Board of Governors of the Federal
Reserve System and U.S. Department of Commerce: Bureau of Economic Analysis. The
data are shown in Figure 4.1 with 300 observaﬁons. Both series have an increasing trend.

The unit root test given in Table 4.3 also confirms this result.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



153
Table 4.2 Modified Test Statistic for Non-Causality with Cointegration

and Its p-Value for Various Aggregation Period

The first variable does not cause the second variable
m Chi-square p-value

1 342978 0

3 314.627 0

4 245.062 0

6 143.499 0

8 100.109 0

10 72.111 0

12 57.462 0

The second variable does not cause the first variable
m Chi-square p-value

1 0.00966 09217

3 123.730 0

4 129.580 0

6 107.397 0

8 82.034 0

10 65.445 0

12 54.739 0

Figure 4.1 Time Series Plot of Monthly U.S. Wage and Salary Disbursements

and Personal Consumption Expenditures
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Table 4.3 The Dickey-Fuller Unit Root Test of U.S. Monthly WAGE and PCE

Variable Type Tau Prob<Tau
WAGE Zero Mean 11.56 0.9999
PCE Zero Mean 11.65 0.9999

To be able to decide the order of the VARMA parameters, we looked at partial
cross correlations of differenced series which are given in Table 4.4. This table indicates

that data are generated possibly from VAR(2) process.

Table 4.4 Sample Partial Cross Correlations of U.S. Monthly WAGE and

PCE
Variable/
Lag 1 2 3 4 5 6 7 8 9 10 11 12
WAGE +. = -,
PCE .+ -+
+ is > 2*std error, - 1s < -2*std error, . 1is between

We perform a cointegration test for this series and the results given in Table 4.5.
It implies that there is cointegration in the system with cointegration rank 1 at a 5%

significance level.

Table 4.5 The Trace Test for Cointegration of U.S. Monthly WAGE and PCE Using

Adjusted Test Statistic
Hp: Hp: Critical Drift Driftin
Rank=h Rank>h Eigenvalue Trace Value InECM Process
0 0 0.4033 154.07 12.21 NOINT Constant
1 1 0.0006 0.18 4.14
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By using the results of Mosconi and Giannini (1992), the Granger non-causality

test is applied. The results are given in Table 4.6. The degrees of freedom of the ¥’ test
is 1. At a 5% level of significance, the null hypotheses of non-causality, stating the real
personal consumption expenditures does not cause the wage and salary disbursements, is
rejected whereas there is not enough evidence to reject the null hypothesis, the wage and

salary disbursements does not cause the real personal consumption expenditures.

Table 4.7 Granger Non-Causality Test of U.S. Monthly WAGE and PCE

x* Test Statistics p - Value
Hy: WAGE does not cause PCE 1.472 0.2249
Hy: PCE does not cause WAGE 24.228 1.7285E-6

Now we will analyze the temporally aggregated data. We use an aggregation
period of m = 3 so that we have quarterly data with a sample size of 100. The time series
plot is given in Figure 4.2. The non-stationary behavior of the variables can also be seen
for quarterly data.

The MINIC in Table 4.7 suggests a VARMA(2,1) model while the schematic
representation of partial cross correlations of differenced series given in Table 4.8
suggests a vector AR(2) model. Because of aggregate data, we will over fit and consider

a VARMA(2,1) model in our analysis.
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O T T T T
Mar-76 Mar-81 Mar-86 Mar-91 Mar-96
Time
——WAGE - PCE |

Figure 4.2 Time Series Plot of U.S. Quarterlty WAGE and PCE

Table 4.7 Minimum Information Criterion for U.S. Quarterly WAGE and PCE

Lag MA O MA 1 MA 2 MA 3 MA 4 MA 5
AR O 33.548 33.691 33.732 33.771 33.823 33.874
AR 1 17.473 17.565 17.600 17.564 17.578 17.551
AR 2 17.406 17.392 17.546 17.570 17.610 17.637
AR 3 17.428 17.535 17.571 17.632 17.692 17.733
AR 4 17.431 17.525 17.611 17.704 17.775 17.836
AR 5 17.436 17.529 17.632 17.738 17.828 17,955

Table 4.8 Sample Partial Cross Correlations of U.S. Quarterly WAGE and PCE

Variable/
Lag 1 2 3 4 5 6 7 8 9 10 11 12
WAGE +. -+ -,
PCE ++ -+~
+ is > 2*std error, ~ is < ~-2*std error, . 1s between

To be able to conduct a cointegration test for aggregates, we must first estimate

the parameters of vector ARMA (2, 1) for aggregates. Since we need the error terms in
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order to calculate the test statistic, we fit the differenced series by maximum likelihood

estimation method for the model
(I-®B-®,B’)AX, =(I-©B)E,.
The MA representation of this model can be found by
AX, =(I-®B-®,B*) (I-OB)E,.
The ECM is given by
AX, =npAX,  +11,.X,,+E, -®OF, ,
where X, =(X,; X,;), E;=(E; E,;) and I, =ad'.

Since the error terms in VARMA model and ECM are the same, after maximum

likelihood estimation of the parameters of VARMA model, we can obtain the residuals,
I:VT_I and use them to calculate the test statistic. The results given in Table 4.9 imply that

the aggregates are also cointegrated with rank 1 at 5% significance level.

Table 4.9 The Trace Test for Cointegration of U.S. Quarterly WAGE and PCE Using

Adjusted Test Statistic
Hp: Hp: Critical Drift DriftIn
Rank=h Rank>h Eigenvalue Trace Value InECM Process
0 0 0.1768 32.53 12.21 NOINT Constant
1 1 0.0000 0.41 4.14

At last we test whether there is a causal relationship between aggregated variables
in the cointegrated system by using the new testing approach developed in this chapter.

Table 4.10 shows the results of a modified non-causality test with cointegration for
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aggregates. Clearly, there is a causal relationship between variables in both ways at a 5%

level of significance.

Table 4.10 The Granger Non-Causality Test of U.S. Quarterly WAGE and PCE

Using Adjusted Test Statistic

y* value p - value
Hy: WAGE does not cause PCE 28.2956 1.192E-7
Ho: PCE does not cause WAGE 30.3339 5.961E-8
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CHAPTERS

REPRESENTATION OF MULTIPLICATIVE VECTOR AUTOREGRESSIVE
MOVING AVERAGE PROCESSES

5.1 Introduction
Many time series data have a seasonal behavior. In order to analyze them,

multiplicative time series models are generally used. In this chapter, we will consider
different representations of multiplicative processes and provide a guideline to be used to

select the best representation.

Let {x}, t=0, £1, £2,.. be a univariate zero mean, covariance stationary,

purely non-deterministic, multiplicative autoregressive and moving average model with
seasonal period s

¢,(B)D,(B")x, =6,(B)O,(B")a,, (CRY
where B is the back shift operator, Bx, =x, |,
¢,(B)=1-¢,B—--—¢,B",
®,(B°)=1-®,B —---—D,B",
0,(B)y=1-6,B~----6 B,
0,(B)=1-0,B’ —----0,B%,
and a, is the Gaussian white noise process with mean 0 and a constant variance o-. The
model is often denoted as ARMA(p,q)x(P,(Q),. For our study, we will denote it as

ARMA(p)(P),(g)(Q),. When p = 0 and P =0, the model is referred to as a multiplicative
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moving average model of order ¢ and Q with a seasonal period s, and it is shortened as

MA(gXQ),. When ¢ = 0 and Q = 0, the model is referred to as a multiplicative

autoregressive model of order p and P with a seasonal period s, and it is shortened as

AR(p)(P),. When Xx, is a k-dimensional vector, the natural extension is the following

multiplicative vector autoregressive and moving average VARMA(p)(P),(9)(Q), model,

9, (B)q’p(Bs)icx,1 =0, (B)®Q(Bs)fx,1, | (5.2)
where
¢,B)=1,-¢B-..—¢,B",
©,(B)=1-®B -..-®,B",
0,B8)=1,-6B-..-6,B%,
and

0,(B")=1,-0,B° -..-0,B,
are matrix polynomials in the backshift operator B, defined by BV, =V,_ ; for any integer
j and vector ¥,. I, is the k-dimensional identity matrix, the ¢’s, ®’s, #’s and ©’s
are kxk parameter matrices, and the a, vector Gaussian white noise process with mean

vector 0 and E(a,a;)=Q. When p = 0 and P=0, the model is referred to as a

multiplicative vector moving average model of order g and Q with a seasonal period s,

and it is shortened to VMA(g)(Q),. When g =0 and Q = 0, the model is referred to as a

multiplicative vector autoregressive model of order p and P with a seasonal period s, and

it is shortened to VAR(p)(P),.
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Because of the commutative nature of scalars in a univariate time series, the

ARMA(p)(P),(g)(Q), model in (5.1) can also be written as the following
ARMA(P)(pX©D),(q) model

@,(B%)¢,(B)x, =0,(B*)0,(B)a,. (5.3)
Can we extend this operation to the vector process and write the VARMA(p)(P),(g)(Q),
model in (5.2) as the following VARMA(P),(p)Q),(q) model?

@©,(B*)¢,(B)x, =0,(B")f,(B)a, . (54

kx1 kx1
Because the matrix multiplication is non-commutative, the answer may likely be “no”.
Both representations (5.2) and (5.4) have been used in the literature and yet surprisingly

the problem has never been raised and discussed.

5.2 Representations and Estimation of a Multiplicative Vector Process
5.2.1 Maximum Likelihood Estimation of Multivariate VARMA Processes

In considering the multiplicative vector AR time series model with seasonal

period s, we can represent it as VAR(p)(P),

4,(B)0,(B")x, =, 55)
kxl  kx1
or VAR(P), (p)
s B -
O BN5 =0 5.6)

where a,s are i.i.d. N(0,Q) and B is the backshift operator such that Bx, = x, ,.

To see whether representations (5.5) and (5.6) lead to the same estimation, let us
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consider a simple VAR(1)(1),

I -¢BYI -DB°)x, =x, - ¢x, ,—Dx, ,+4Dx, ., =a,, 6.7
where a,s are i.i.d. N(0,7). For simplicity, we assume that ¢ is known. The likelihood

function for (5.7) can be written as

=1

1. % ,
El ((D l x) o« Xp {_ 5’ trz (x: - ¢xt—l - (Dxt—s + @xt—s—l )(xt - ¢xt—1 - (I)xl-—s + @xl—s—l ) } .

(5.8)

For a fixed ¢, the maximum likelihood estimator of ® can be found from

n n n "
O x, X, ~ Y x, x| —gOY X, x| +FPOY x,_ x| =
t=1 t=1 t=l le (5 9)

"
= Z(xtxt,—s - ¢x!x;—s—1 - ¢x ~1x;—s + ¢xt—1xt,—s-l¢')'

t=1

Consider the following VAR(1) (1) representation
(I -0B°)I-¢B)x, = x,—¢x, , —Dx, ,+Dx, . =a,, (5.10)
where ¢ is known and a,s are i.i.d. N(0,7). The likelihood function of (5.10) can be

written as

Ez((l) | x) o« eXp {“%ui (xt - ¢x -1 (Dxi—s + (I)¢x 51 )(xt - ¢xt~l - (Dxt—s + (D¢x —s-1 )'} y

(5.11)

The maximum likelihood estimator of @ is
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n
o= [Z (xtx;—s - ¢xt—1x;—s - xzxi-s_lf + ¢xz—1x;—s—1¢))} X
=1

(5.12)

1
n
2 : ' ' ' ' ' '
x I: Xy Xt s~ ¢xt-s—lxt—s - xt—sxt—s—1¢ + ¢xt—-s—l xt~—s—l¢
t=1

From (5.9) and (5.12) we can see that the maximum likelihood estimators of the
same parameter are different for the two representations. The aim of the following

simulation study is to illustrate the differences in estimation for each representation type.

5.2.2 Simulation Study

If we have a multiplicative VAR process, we can represent it by the following

processes
4,(B)®,(B*)x, = a,, (5.13)

or
®,(B*)4,(B)x, =a,, (5.14)

where a,s are i.i.d. N(0,Q), and B is the backshift operator such that Bx, =x, ;. The

purpose of the following simulation study is to show the differences in estimation and
forecasting for these representations.
To investigate the impact of different representations on parameter estimation,

1,105 observations were generated from the following two-dimensional vector model

(I -¢B)I - DB*)x, =a,, (5.15)

. S5 -4 6 .1 . ] . .
with ¢= , ®= , and a is the vector Gaussian white noise
3 .6 -6 8 !
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N ([g},ﬂ =[§ ISSD To remove the effect of initial values, the first 100 observations

were deleted, the last 5 observations were retained for forecasting comparison used in the
next section, and the remaining 1,000 observations were used to estimate the parameters
with two different case representations:

CASE 1: Fit the series as VAR(1)(1),,
CASE 2: Fit the series as VAR(1),(1).
This process was repeated 10,000 times.
Similarly, 1,105 observations were generated from the two-dimensional vector
model
(I-®B*)I-¢B)x, =a,, (5.16)
with the same ¢, @, and a, given in (5.15), and the above process was repeated to

estimate the parameters in the following case representations:
CASE 3: Fit the series as VAR(1)(1), ,
CASE 4: Fit the series as VAR(1),(1).
Again, the process was repeated 10,000 times.
Table 5.1 gives averages of the estimates for ¢, @, and Q for Case 1 and Case 4

clearly give much smaller biases than for Case 2 and Case 3. The sum of absolute biases
for all parameters for Case 1 is 0.019, whereas for Case 2 it is 0.776. Similarly, the
values for Case 3 and Case 4 are 1.282 and 0.02, respectively. The results imply that the

correct representation of a multiplicative vector model is important. The

VARMA(p)P),(gXQ), and VARMA(P),(p)Q),(q) representations are not
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interchangeable. Similar results were obtained for the VMA and VARMA processes.

Table 5.1 Average Maximum Likelihood Estimates of Parameters of Various
Representations

IPARAMETERS]

é CASE 1 CASE 2 CASE 3 CASE 4
0.5 -0.4 | 0499 -0.401]0585 -0.157] 0.521 -0.377]0.499 -0.4
0.3 0.6 0.3  0.599 {0312 05910332 0626 | 03 0.599

o
0.6 0.1 |0599 0.101 ] 0.59 0.096] 0.741 0.156 | 0.598 0.101
-0.6 0.8 -0.6 0.799 |-0.607 0.792| -0.38 0.822 |-0.601 0.799

Q
2 0.5 | 1.994 0499 | 2246 0.505]2.223 0.635]1.99% 0.499
0.5 1.5 [0499 1494|0505 1.552]0.635 1.748 | 0499 1.493

5.3 Forecasting

One of the most important applications of the time series analysis is to forecast or
predict future values. The predictor that minimizes the forecast mean squared errors
(MSEs) is the most widely used.

Given ¢ =1, 2, ..., n, the minimum mean square error forecast of x,,, is given by
its conditional expectation x,(£). That is,

X, (0) = E(Xp g | X5 Xp5e-:) 5 (5.17)
which is called the £-step ahead forecast of x,,, at the forecast origin » where £=1,2,...
The corresponding vector of forecast errors is

€ () =X, —%,(0). (5.18)

Forecast comparisons are often based on Mean Square Forecast Error (MSFE)

defined for a univariate process as
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Ele, (0)]= {Ele, (D]} + VIe, (O], (5-19)

which is equal to the squared bias in the / -step ahead forecast error e,({) = x,,, — X,({)

plus the forecast error variance.

In a multivariate analysis, the MSFE matrix is E[e,({)e, ({)], but usually the trace

MSFE (TMSFE) is used to compare forecasts (Lin and Tsay, 1996). Thus, TMSFE is the

sum of the MSFE for each variable and denoted by tr{E[e,({)e,({)]} . The sample
MSFE is calculated by

(0 =e, (£ (0). (5.20)

In forecasting comparison through a simulation, after the TMSFEs are obtained, the

square root average for /-step ahead forecasts is computed as

M(e)=\/Ztr<«i(e»/R : 5:21)

i=1
where the summation is over the number of replications (R = 10,000). Table 5.2 shows
the square root averages of TMSFEs for the various ¢-step ahead forecasts from the
models generated earlier in section 5.2.2 for the two representations in (5.15) and (5.16),
including their estimation results.
From this table we can see that the square root averages of the TMSFE for Case 1
and Case 4 are clearly less than those for Case 2 and Case 3. This implies that the correct

representation of a multiplicative model is important to achieve good forecast results.
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Table 5.2 Five-step Ahead M (¢) Values of Various Representations

£=1 | £=2| £=3 | {=4 | (=5
CASE1 |1.875|2.2282.3622.428|2.676
CASE 2 [1.957|2.342|2.462|2.506|2.803
CASE 3 |2.001|2.437]2.618|2.699 |2.994
CASE 4 |[1.875|2.23012.366{2.430|2.678

5.4 Representations and Causality
One of the most important goals in studying vector time series is to examine the
causal relationship between variables. There are many measures for causal relationships

between variables; the Granger (1969) causality is probably the most widely used. Let
the k dimensional vector process be partitioned into two subvectors x, =(x],,x}, )' where
Xy =ioYiy)  and Xy, =(Yy s0¥in,) are k and k, dimensional vectors
respectively, and k =k +k,. A time series {x,,} is said to cause another time series
{xZ,} if the present value of x, can be better predicted by using the past values of x;

and x, rather than by using only the past values of x, .

Consider the stationary and invertible k-dimensional VARMA (p, q) process

I(B)x, = ¢(B)a,, 622
where H(B)=I—H1B—...—HPBP=(H”(B) H‘z(B)) and
IL,(B) Mx»(B)

¢,(B) ¢,(B)

) . The a,’s are uncorrelated random
?,(B) ¢»(B)

#(B)=1-pB—..— @B =(

vectors with mean 0 and the non-singular covariance matrix . Assume that the
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parameters in II(B) and ¢(B)are uniquely defined and the process x, is partitioned into
two vectors x, =(xj,,X5,) , where x;,, and x,, are k and k, dimensional vectors
respectively with k, + k, = k. Then, x, does not cause x, if and only if

IL,,(2) - @, ()9, (2) "I, (2) = 0, (5.23)
(Boudjellaba, Dufour and Roy, 1992).

In the following sections, we will examine the causality conditions for two

different representations for some simple multiplicative vector processes.

5.4.1 Vector Autoregressive Process
Consider the two-dimensional multiplicative vector autoregressive model with p =

1, P =1, and a seasonal period s. For this process, we have two possible representations:

VAR()(Y),,
(I-¢B)(I-®B)x, =a,, (5.24)

which is more explicitly written as

o8l oHE s

1-6,B- @B+ (8D, + 6,0, )B™  —,B- 0,8 +(#,®); +,0,)B™" }‘ =a
s S t %>
4B~ @B’ + (¢ Py, + 6, B 1-4,B- Dp,B" +(¢yPyy + 9P B

and VAR(1),(1),
(I-®B*)I-¢B)x, =a,, (5.25)

or more explicitly
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L 0) (& @ B 1 0) (én ¢1sz=“
0 1) (@5 Dp 0 1)\ ¢ o

[1 —¢,B—@,B° + (D ¢, + D4, )B*! ~4,B—®,B° + (D ¢, + D16, B jl
~$yB— @y B’ + (D)4, + Dy )1 S $,,B — Dy, B° + (0,4, + Py, B!

¢ %

According to (5.23), the VAR(1)(1), representation given in (5.24), x, does not
cause x, if and only if ¢, =0, ®, =0 and ¢, ®, +¢,®, =0. This means that
¢,, =0 and @,, =0 are the non-causality conditions for (5.24) because in Equation (5.23)

I, (2) =1-¢,z—®,,z° +($,®,, +4,D,)z", 11,,(2) = ~¢,,z— ®,,2°* +($,,D,, + $,D,)z"",
@:.(z)=1and ¢, (2)=0.

According to (5.23), for the VAR(1), (1) representation given in (5.25), x, does not
cause x, if and only if ¢, =0, ®,, =0, and ¢,P,, +¢,P,, =0. This implies that x,
does not cause x, if and only if ¢,, =0 and ®@,, =0 since in Equation (5.23)

I,(2)=1-4,z-®,,z° +(®,¢, +D.,$,)2"", 11,,(2) = ~¢,,z D, 2" +(D,¢, + D,4,)z"" ,
9,,(z)=1 and ¢, (2)=0.

Thus, in both representations, we have the same non-causality conditions.

5.4.2 Vector Autoregressive-Moving Average Process
Consider the simple multiplicative VARMA process withp=1,¢g=1,P=1 and

Q = 1. For this process, let us consider the following two different representations:
I -¢B)(I -DB*)x, = (I -9B)(I -OB*)a,, (5.26)

which is
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o o 2o e o)

and
(I -OB*)(I —¢B)x, =(I -OB*)(I -0B)a,, 527
which is
6 - 22l - R
A oHer el oHa &)

For the representation in (5.26), in using (5.23), x, does not cause x, if and only if
Oy =0y, 4,=6,, $=04, ¢, =6, , ©®,, =0, and @, =0, because in Equation
(5.23)

I1,(2)=1-¢,z-®,,2° + (4,0, +4,9,)z"",

IL,(2)=—¢,z2—0,,2° + (¢, D, +$,,D,, yz*,
and

9,(2)=1-6,2-0,Z° +(6,0,, +6,,0,, )z*,

0,,(2)=—-0,z-0,2" +(6,0, +06,,0,, )z*.
For the representation in (5.27), x, does not cause x, if and only if 6,, =4¢,,, ¢,=6,,
D, =0,, ®,=0,, ®,=0,, and ®,, =0,, since in Equation (5.23)

,(z)=1-¢,2-®, 2 + (@4, + Pz,

I1,,(2) =@,z D@, 2" +(Dy4, + ':I)zz¢21)zs+l >
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and

0,(2)=1-6,2-0,z° +(©,6, +0,,6,)z",

9,(2)=-0,z-0,7 +(0,0, +0,0,)z".
Thus, the causality conditions for the representation in (5.26) are 6,, =4, , ¢, =6,,,
b,=6,, ¢,=06,, ©,, =0, and &, =0,,, whereas the causality conditions for the
representation in (5.27) are 0, =4, , ¢,=6,, ©,,=0,,, ®,=0,,, ®,=0,, and

®,, =0,,. They are no longer the same.

5.5 Summary Statistic to Determine the Multiplicative VARMA Model

The Akaike Information Criterion (AIC) (Akaike, 1973) is widely used for model
selection. However, AIC is designed for minimizing the 1-step forecast mean square
error and is not consistent (Shibata, 1980). Thus, the following consistent criteria are
also taken into consideration; the Hannan and Quinn Information Criterion (HQ) (Hannan
& Quinn, 1979), and the Schwarz Information Criteria (SC) (Schwarz, 1978). Our
purpose of using the information criteria here is not to choose the order of the process but
to decide the best representation for the multiplicative processes which have the same

order. The following formulas for each criterion are used:

2
AIC=m}ﬁ|+2k (p+g+P+0) (5.28)
n
2
HQ:mifziJ“Zk (p+q+P+Q)ln(lnn)’ (5.29)
n
2
SC=1n|s“2]+k (p+g+P+Q)lnn (5.30)
n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



172

where n is the sample size, k is the dimension of the process, and Q is the maximum
likelihood estimate of the error covariance matrix.

The equations (5.28), (5.29), and (5.30) were calculated for each case by using the
same Monte Carlo results in section 5.2.2. Table 5.3 presents the averages of these

values by using 10,000 realizations.

Table 5.3 Averages of Information Criteria of Various Representations

AIC | HQ | SC
CASE 1]1.018/1.033]1.057
CASE 2}1.185[1.200|1.224
CASE 3[1.2601.275|1.299
CASE 411.0181.033}1.057

When we compare the information criteria of Case 2 with Case 1 and Case 3 with
Case 4, we can see the slight superiority of Case 1 and Case 4 over Case 2 and Case 3
respectively because of the smaller values ’of AIC, HQ, and SC. All the information
criteria give the same results so that one can use any of these values to decide the best
multipiicaﬁve model representation. The smaller the information criterion is, the better

the representation of the multiplicative process.

5.6 Model Structure of Temporal Aggregates in Multiplicative Seasonal Vector
Time Series

For this section, we derive the proper model of temporal aggregates for a given
basic seasonal vector time series process. Wei (1978b) showed that given a univariate

time series model of the order (p)(P){(q)(Q)s, the corresponding model for aggregates
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with an aggregation period m is of the order (p)(P)s(c)}Q)s, where s=mS for some

q—p-—1

integer S and c=[p+1+
m

}. This means that after temporal aggregation, the

order of the process is dependent only upon that of the moving average order of non-
secasonal parameters. The following proposition is to generalize Wei’s result to the
multivariate case.

Proposition 5.1 Let x, be a zero mean basic time series following a
VARMA(p)(P)s(q)(Q)s process:
#,(B)®,(B*)x, =6,(B)®,(B")a,, (5.32)
where
¢,(B)=1, ~4B—..— 4,8,
®,(B)=1,-®B -..-®,B",
6,B)=I1,-6B-..-6, B,
and
0,(B)=1,-0B -..-0,B%,
the @s, @s, Os,and Osare kxk parameter matrices, and a, the vector Gaussian white
noise process with mean vector 0 and E(a,a;) = Q. The aggregate time series defined by

X, =(1+B+. . +B"")x_. will follow a VARMA(p)(P)s(c)(Q)s process where s=mS and
c= [ p+l+ ‘1_‘.2_“_1] :
m

@,(B)T,(B*) X, =1, (B)Y,(B°)E;, (5.33)
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where E, are a sequence of random variables with mean vector 0 and the covariance
matrix Q.
Proof:

The matrix polynomial ¢,(B) can be written as

P
#,(B)=I-¢B---~¢,B? =] [(1-5B) (5.34)
i=1
for &, s satisfying
p-1
¢, =(- 1)’“‘?2 -8, B, 4 =(- 1)’“121'1 =1,-,p—1 and
=1 h=i+1 zj,—12+l Jj=1 £=1

p
¢, =(-1) H5 , because
j=

H(I 5B)=1- Z(SB+i§:55B2+ +

i=1 =i+l

+(- 1)”“22 i 8,6, -6, B +(- 1)”1_[5131’

b=l h=h+1 i =i, ,+]

Similarly, the matrix polynomial ®, (B‘) can be written as

®,(B*)=1-®B -~ ®,B" =fl(1— pB’) (5.35)

i=1
where p; is satisfying
Pl Pl

(D ( 1)1—12 Z Z pi,piz“'pij_‘Bs(jﬁl)’j=15"'9P—1 and ¢P=(~1)Pﬁpj
j=1

=l =i+l =i+

because
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P P-1 P-1

[1(7-pp)=1 ZP.B’+Z D PP B+

j=1 i=l i =1 i,=4+1

P-1 P-1 P-1

+( I)P—xz Z Z PP, P, Bs(P—l) +( 1) H ptBsP

i=l =i+l i,=i, ,+

The Equation (5.32) can be written as

P P
[Ju-sB)] J(1-28)x. = 6,(B)0, (B )a,. (5.36)
i=1 i=1
When we multiply both sides of Equation (5.36) by
(I-8B)",

we get

(1-6B)" ﬁ(l-a,.B)ﬁ(z— pB' )x, =(I-5B)" 6,(B)0,(B')a,,

i=1 i=1

that is,
P L o
[Tu-B)] J(1-pB ) =(1-6B)"6,(B)®,(B*)a,.  (537)
i=2 i=1
When we multiply both sides of Equation (5.37) by

(I-5,B)",

we get

[To- aB)H (1-pB ), =(1-6,8) (1-5B)"6,(B), (B)a,

=3

We continue multiplying both sides of the new equation by (7 —é',.B)—1 ,i=3,---,p and

then start multiplying both sides by (I - piB)—1 , i=1,---,P. Finally, we obtain
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x, = ﬁ([- Pp_iB’ )ﬁ(l -5, B) 6,(B)®,(B)a,. (5.38)

Then, we multiply both sides of Equation (5.38) by

(1-B") 42 P

WH(I -orB”)[ J(1-pre)

i=1

and we have
g (T
T o) To-sra)f J-or ) [ -5, ) 0 @0, (@)e,
Since s=mS,
(;—I:B-]:)—)Iij(l - a;'B'")Ij(I - p'B™ Jx,

- ((1:;) [T(r-sm=)] [(1-¢,.B) 6, (B)8, (B")a,

i=1 Jj=0

By changing ¢ to mT ,

.((1_1___%11:1(1 - 3{"B"‘)ﬁ(1 =~ PIB™ Yy

= (5.39)

S Ta-am ) r-5.) 0.0, (5)a.r

i=l j=0
(1-8")

(1-B)

Since X, = x,,., Equation (5.39) becomes
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4

H(I - 5;"13)1!'[(1 - prBE)X,

i=1 i=1

) (R ) (RN

or

o, (B)T,(B%)X, = (I_Bm)fl(l—a,."'B"' )ﬁ(l—ap_jB)"nq (B)Y,(B*)a,, (5.40)

(1 -B ) i=1 j=0

where S=m/s. When we look at the right-hand side of Equation (5.40), we can see the

highest order of the non-seasonal MA parameters is

c= [q +(m-1)+ p(m —1)]/ m=p+1+ g-p-1 . Therefore, equation (5.40) is given by
¢, (B)T,(B*) X, =1, (B) Y, (B*)E, (5.41)

where S=m/s and c=[p+1+—q%*l}. Q.E.D.

Note that these orders are the maximum values and we assume that there is no
hidden periodicity. Thus, we obtain a similar result to the univariate case that was proved

by Wei (1978b).

5.7 Empirical Examples
5.7.1 Monthly Single-Family Housing Starts and Housing Sales for the
Period of January 1965 through May 1975

For a real life example, let us consider two monthly U.S. housing series from

January 1965 to May 1975: single-family housing starts as x,, and housing sales as x,, .

The source of the data is from the U.S. Census Bureau. The data are shown in Figure 5.1
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with 125 observations. Both series have a seasonal behavior and there is a strong

relationship between x,, andx,,. This data set was analyzed by Hillmer and Tiao (1979)

and they first fit a model for individual series. As a univariate model, they found that the
multiplicative form best fits the data. By individual analysis, they found that a first order
difference and a seasonal difference were required to obtain a stationary series.

Based on the sample autocorrelation and partial lag autocorrelation matrices,
Hillmer and Tiao (1979) followed the traditional representation of a multiplicative
seasonal ARMA model given in (5.2), and proposed the following multiplicative seasonal
vector ARMA model:

(I -¢B)1-B)1-B?)x, =(I-6B)I-OB")a, . (5.42)

2x1 2x1

140 -

1,000 Houses

0 T T T T T
Jan-65 Jan-67 Jan-69 Jan-71 Jan-73 Jan-75
Time
Housing Starts  — - — - Housing Sola

Figure 5.1 Monthly U.S. Single-family Housing Starts and

Housing Sales from January 1965 to May 1975
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To estimate the model, the time series software SCA and its exact likelihood

estimation are used. Table 5.4 gives the estimates of the parameters (¢, €, @) along
with the covariance matrix, Q for a,. These values are approximately the same as the

parameter estimates of Hillmer and Tiao.

Table 5.4 Parameter Estimates and Their Standard Deviations for Model (5.42)

0796  1.806 1316 0938 0788  0.005

j| 0058 ©218)| 5 ©014) ©192) . | (0.071) (0.113) é:(36'780 7-258)
~0.130 -0.388 -0.357 -0.060 0.082  0.696 7.258 15652
0.142) (0.459) (0.122) (0.495) 0.051) (0.081)

Note that by switching the order of non-seasonal and seasonal polynomials, the

model can also be represented as follows:
(I -#B)(1-B)1-B")x, = (I -©B”)I —6B)a,. (5.43)
Representation (5.40) is different from the representation (5.42) of Hillmer and

Tiao (1979) because the model is represented as VARMA(0),,(1)(1),,(1) instead of the
traditional VARMA(1)(0),,(1)(1),, representation. The exact likelihood estimation of the

representation (5.43) is given in Table 5.5.

Table 5.5 Parameter Estimates and Their Standard Deviations for Model (5.43)

0523 1.207 1.043 0395 0.763  0.091 ,‘ 35.962 7.660
j- (0.086) (0.183)| ,5_|(0.062) (0.226) 6 (0.064) (0.099) =( 7660 1 5_837]

0.155  0.288 -0.058  0.588 0.035 0.745

(0.05) (0.238) (0.088) (0.247) (0.035) (0.066)
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To evaluate the two different representations for (5.42) and (5.43), they are used

to forecast the values for the next five periods and then compared with the actual values
from June 1975 to October 1975 from the U.S. Bureau of Census. The comparison in

terms of the square root average of the TMSFE is given in Table 5.6.

Table 5.6 The M({) Values of Two Different Representations for Monthly US

Single-family Housing Starts and Housing Sales

Model as VARMA(1)(0),,(1)(1),, |Model as VARMA(0),,(1)(1),, (1)
June 1975 7.276 6.990
July 1975 1.732 0.218
August 1975 3.392 1.646
September 1975 3.683 0.421

QOctober 1975 11.481 8.606

5.7.2 Monthly M2 Stocks and Consumer Price Index for the Period of
January 1959 through May 2006

Our second example uses two monthly U.S. money and price series from January

1959 to May 2006: M2 money stock as x,, and the U.S. consumer price index for all

urban consumers as x,,. The source of the first series is from the Board of Governors of

the Federal Reserve System, and the second one is from the U.S. Department of Labor:
Bureau of Labor Statistics. The sample size of the data is 569. In order to see the
seasonal behavior of the series, the data are shown in Figure 5.2 with 69 observations.
For forecasting purposes, we use 564 of the observations and keep the last 5 observations

in order to compare them with their forecasts.
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M2 CPI

7000 200

6500 - 190

6000 180 -

5500 -

5000 170

4500 1+~ : — ‘ 160 - ‘ . :

Jan-00 Jan-02 Jan-04 Jan-06 Jan-00 Jan-02 Jan-04 Jan-06

Time Time

Figure 5.2 Monthly U.S. M2 Stocks and Consumer Price Index for the Period of
January 2000 through May 2006

Both series have a seasonal behavior and an increasing trend over time. We need
differencing to reduce them to stationary series.

To estimate the model, the time series software SCA and its likelihood estimation
are used. After differencing of orders 1 and 12, Tables 5.7 and 5.8 give the schematic
representations of cross correlation matrices and partial autoregression, respectively.
These tables show that a possible model to represent this data set may be
VARMA(1)(0)12(2)(1)12 or VARMA(0)12(1)(1)12(2). That is, we propose the following

multiplicative seasonal vector ARMA models:

VARMA(1)(0)12(2)(1)r2:
(I-¢B)1-B)1-B?)x, =(I-6B-6,B*)(I-OB")a,. (5.44)
and VARMA(0)12(1)(1)12(2):
(I -¢B)(1-B)1-B*)x, =(I-OB”*)YI-6B-6,B")a,. (5.45)

2x1 2x1
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Table 5.7 Sample Cross Correlation Matrices of Monthly U.S. M2 Stocks

and Consumer Price Index

LAGS 1 THROUGH o

+ - + - + . - . .. .
+ .. .. .. .. -

LAGS 7 THROUGH 12

S gt .. - . - . - .
+ .. .. .+ .o . -

- LAGS 13 THROUGH 18

- . .4+ .4+ .. + . +
+ - .. .4+ ~

LAGS 19 THROUGH 24

+ . + . « . . . + . - .
- . . . .. - . .o + -
SUMMARIES OF CROSS CORRELATION MATRICES USING +,-,., WHERE
+ DENOTES A VALUE GREATER THAN 2/SQRT (NOBE)
- DENOTES A VALUE LESS THAN -2/SQRT (NOBE)
. DENOTES A NON-SIGNIFICANT VALUE BASED ON THE ABOVE CRITERION

Table 5.8 Sample Partial Cross Correlations of Monthly U.S. M2 Stocks and Consumer

Price Index
Variable/
Lag 1 2 3 4 5 6 7 8 9 10 11 12
x1 +- .= . -. .. .. -. .. . -. - -
X2 .+ . .. -. .. .. [ -. ++ .+ .. .
+ is > 2*std error, - is < -2*std error, . is between

Estimates of the parameters (¢, 6,, &,, ®) along with the covariance matrix, Q

for a, are given in Table 5.9 for Model in (5.44).
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Table 5.9 Parameter Estimates and Their Standard Deviations for Model (5.44)
0.321 85.683 -0.031 -84.015 0.179 -36.523
j- (0.168) (12.605) - | (0.176) (12.172) 4 _| ©107) (6332)
"1 0012 -0.893 71 0014 -1.334 271 0007 -0.420
(0.003) (0.159) 0.003) (0.159) (0.001) (0.082)
0.628 —3.271
o= (0.036) (1.608) . 118.163 0.156
"1 -0.0045 0.772 | 0.156 0.068
0.007) (0.031)

Similarly, by switching the order of the non-seasonal and seasonal polynomials,

the likelihood estimation of Model in (5.45) is given in Table 5.10.

Table 5.10 Parameter Estimates and Their Standard Deviations for Model (5.45)

0290 -70.765 —0.067 -70.886 0.175 -30.603
i (0.158) (10.768) s | 0.167) (0.516) G _| (0:099) (5.401)
| 0014 -0.830 "1 0017 -1.265 271 0.008 0385
(0.003) (0.153) 0.003) (0.154) (0.002) (0.079)
0.692 1395
& 0026 (1346) é2(118.778 0.080)
0.002  0.729 0.080 0.068
(0.0003) (0.027)

To evaluate the two different representations for (5.44) and (5.45), they are used

to forecast the values for the next twelve periods and then compared with the actual

values from January 2006 to May 2006. The comparison in terms of the square root
average of the TMSFE is given in Table 5.11.
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Table 5.11 The M (¢) Values of Two Different Representations for Monthly U.S.

M2 Stocks and Consumer Price Index

Model as VARMA(1)(0),,(2)(1),, [Model as VARMA(0),,(1)(1),,(2)
January 2006 12.4 12.5
February 2006 17.6 18.1
March 2006 14.0 16.1
April 2006 10.7 18.9
May 2006 24.9 17.6

The difference in the forecasting performance between the two representations of
the multiplicative vector model is very significant. The representation given in (5.44)
gives much better forecasts. The AIC for representation (5.44) is 2.138, which is slightly
smaller than the AIC for representation (5.45) at 2.145. Thus for this data set, we

propose the traditional representation of the multiplicative model given in (5.44).

5.7.2.1 Analysis of Temporal Aggregates

The two quarterly U.S. money and price series from the first quarter of 1959 to
last quarter of 2005 are the M2 money stock as X, and U.S. consumer price index for
all urban consumers as X, ;. ; these are obtained from the monthly series. The sample

size reduces one third which makes N = 188. The first quarter of 2006 will be used for
forecasting purposes. The time series plot of the data is given in Figure 5.3. The graph

shows that both series have a seasonal behavior and an increasing trend over time.
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M2 CPl
20000 600
18000
550
16000
14000 T T T T T 500 - T —
Dec-00 Dec-0l Dec2 Decd3 Dec-04 Decd5 Dec-00 Dec-01 Dec-02 Dec-03 Dec-04 Dec-05
Time Time

Figure 5.3 Quarterly U.S. M2 Stocks and the Consumer Price Index for the Period

Q4_2000 through Q4 2005

To estimate the model, the time series software SCA and its likelihood estimation
are used. After the differencing of orders 1 and 4, Tables 5.11 and 5.12 present the
schematic representations of cross correlation matrices and partial autoregression,
respectively. These tables show that possible models to represent this data set may be
VARMA(1)(0)4(1)(1)s or VARMA(0)4(1)(1)4(1). That is, we propose the following

multiplicative seasonal vector ARMA models:

VARMA(1)(0)4(1)(1)4:
(I -pB)(1-BY1-BY) X, =(I -yBYI-TB")E, . (5.46)
2x1 2x1
and
VARMA(0)4(1)(1)4(1):
I -eB)1-B)Y1-BY) X, =(I-TB")(I-nB)E; . (5.47)
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Table 5.12 Sample Cross Correlation Matrices of Quarterly U.S. M2

Stocks and the Consumer Price Index

LAGS 1 THROUGH 6

LAGS 7 THROUGH 12

- - . -

LAGS 13 THROUGH 18

+ —_— -_—
+ +
LAGS 19 THROUGH 24
LAGS 25 THROUGH 30
SUMMARIES OF CROSS CORRELATION MATRICES USING +,-,., WHERE

+ DENOTES A VALUE GREATER THAN 2/SQRT (NOBE)
- DENOTES A VALUE LESS THAN -2/SQRT (NOBE)
. DENOTES A NON-SIGNIFICANT VALUE BASED ON THE ABOVE CRITERION

Table 5.13 Sample Partial Cross Correlations of Quarterly U.S. M2 Stocks and the

Consumer Price Index

Variable/

Lag 1 2 3 4 5 6 7 8 9 10 11 12
X1 4. -+ .- .. .. .. .. .. .. .. ..

X2 .+ .. .- .. .. .. .. .. .. . ..

Estimates of the parameters (¢, 7, I') along with the covariance matrix, Q, for

E, are given in Tables 5.14 and 5.15 for the models in (5.46) and (5.47), respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



187

Table 5.14 Parameter Estimates and Their Standard Deviations for Model (5.46)

0.738 19.142 0.345 30.186
. 1(0.098) (4.165) 0.118) (5.787)
?=1 0.008 0.404 0013 —0.227
(0.003) (0.107) (0.003) (0.114)
0931 3.859
f_|0047) (1.885) & =(3485.77 —8.72)
-0.006 0.857 E 872 1.78
(0.001) (0.044)

Table 5.15 Parameter Estimates and Their Standard Deviations for Model (5.47)

0.624 19.197 0212 30.178
. 1(0.104) (4314) 0.121) (5.557)
?=1 0009 0479 0014 —0.108
(0.003) (0.105) (0.003) (0.117)
0.870 1.261
f_|©040) (1.724) 4 2(3569.96 —9.33)
0.0099 0.886 E -933  1.76
(0.008) (0.037)

To evaluate the two different representations for (5.46) and (5.47), we obtain the
first step-ahead forecasts and then compared them with the actual values for Q1_2006.
The comparison, in terms of the square root average of the TMSFE, is given in Table

5.16.
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Table 5.16 The M (¢) Values of Two Different Representations for Quarterly U.S.

M2 Stocks and the Consumer Price Index

Model as VARMA(1)(0), (1X1), | Model as VARMA(0),(1)(1), (1)
Q1 2006 26.50 35.53

The difference in forecasting performance between the two representations of the
multiplicative vector model is very significant. The representation given in (5.46) gives
much better forecasts. The AIC for representation (5.46) is 8.848, which is slightly
smaller than the AIC for representation (5.47) at 8.859. Thus for this data set, we
propose the traditional representation of multiplicative model (5.46) with the parameters
given in Table 5.14. This result is consistent with Proposition 5.1. The order of seasonal
and non-seasonal matrix polynomials in the best representations for the basic series and

the aggregate series are the same.
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CHAPTER 6

CONCLUDING REMARKS

Time series often contains observations of several variables, and multivariate
vector time series processes are used to study the relationship between these variables.
The time series data used are typically sums or averages of data that is frequently
generated more than the reporting interval. The study of temporal aggregation of
multivariate processes is important because many properties of interest, such as causality
and cointegration, can only be studied through multivariate processes.

After an introduction of basic concepts for vector processes, we analyzed some
properties of vector time series under temporal aggregation and derived some vector
ARIMA models for temporal aggregates for some commonly used time series processes.
The results show that temporal aggregation affects the model structure of vector ARIMA
models. Temporal aggregation often results in a moving average term. Even though the
data generation process for the basic series is a simple vector AR, we have a vector
ARMA model after temporal aggregation. This affects many multivariate time series
analyses. Based on this fact, we developed proper test statistics for testing cbintegration,
causality, and others when aggregate time series are used.

We have demonstrated that although cointegration remained upon aggregation,
the error correction representations for the basic series and aggregated series are no

longer the same. To see the effect of aggregation on an existing likelihood based test, we
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performed a simulation study on a simple cointegrated vector AR(1) model. As the
aggregation period m increases, the test indicates no cointegration, and this contradicts
the theoretical result that we have proved that cointegration remained upon aggregation.
Therefore, the test statistic to test cointegration in the system needs to be modified for
aggregate data. Based on the new error correction representation, we develop a new test
statistic and obtain its limiting distribution for time series aggregates.

In the literature, there are many studies on the effect of temporal aggregation on
the Granger causality. However, these studies do not take into consideration the fact that
the form of the vector time series model is changed after aggregation. We have shown
that the non-causality conditions are not the same for the basic and aggregate series.
Through the vector time series model of aggregates, we have shown the distortion effect
of aggregation on causality, which is consistent with the results proved by Tiao and Wei
(1976), and Wei (1982) in terms of a distributed lag model.

In a vector autoregressive process, the Granger non-causality of one set of
variables for another set of variables is characterized by no constraints on the
autoregressive coefficients. If the process is stationary, the test for non-causality is
usually performed using Wald (or likelihood ratio) tests which are asymptotically chi-
squared. Although Wald tests for Granger causality will not maintain their usual
asymptotic properties in general for cointegrated systems, they maintain their asymptotic
chi-square distribution for bivariate systems (Liitkepohl and Reimers, 1992). These
results emphasize that before performing the Granger causality test, one should
investigate the existence of the unit roots or cointegration in the system. Under temporal

aggregation, the Wald test or likelihood ratio test for testing non-causality in cointegrated
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systems is the same. We only consider the structure change in the vector autoregressive
models. Because of this change, the non-causality conditions are much more complicated
than the conditions for the basic series. Mosconi and Giannini (1992) suggest a
likelihood ratio test which is more efficient by imposing the cointegration constraints
under both the null and the alternative hypotheses. Therefore, we used their approach to
test causality in cointegrated systems for aggregates. Since the error correction model for
aggregates is different from the error correction model of the basic series aggregates
given in Mosconi and Giannini (1992), the testing procedure needed to be corrected for
the aggregates. We developed the new testing procedure to test non-causality in
cointegrated systems for aggregates. We derived the test statistic that is used to test non-
causality in cointegrated systems when aggregates are used. It is shown that the limiting
distribution of the test statistics is the same as that of basic series. We performed a
simulation study to see how well our testing procedure works. We used a cointegrated
bivariate vector AR(1) model where the second variable does not cause the first variable.
Our simulation study shows the distortion effect of temporal aggregation on the causal
relationship in cointegrated system. Temporal aggregation changes the non-causal
relationship to causal one. When the sample size increases, the probability of rejecting
the non-causalify in cointegrated system also increases. With an increasing aggregation
.period, there is a loss in the power of the test because of the decrease in sample size.
The power of the test approaches 1.000 when the sample size increases. Therefore, we
recommend using the test which is designed specifically for aggregates in order to test
non-causality in cointegrated systems.

In a time series analysis, we often see periodic behavior and use multiplicative
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models to describe this phenomenon. In a univariate time series analysis, the order of
non-seasonal and seasonal parameters does not matter because of the commutative
property of scalar multiplication; however, the order becomes important for the
multivariate case. In general, the matrix multiplication is non-commutative. In order to
see the effect of the order change in non-seasonal and seasonal parameters, we looked at
the likelihood functions of two representations. In the first representation, the traditional
way is used, that is, the non-seasonal matrix polynomial is placed in front of the seasonal
matrix polynomial. In the second representation, we place the seasonal matrix
polynomial in front of non-seasonal matrix polynomial. We have shown that the
maximum likelihood estimation results are different for the two representations.

Through a detailed simulation study, we examine the impacts of different
representations on parameter estimation, forecasting, and causality. It has been shown
that the order of non-seasonal and seasonal parameter matrix polynominals in the
representation is important. They are not interchangeable. We consider three types of
information criteria: the Akaike Information Criterion, the Hannan and Quinn
Information Criterion, and the Schwarz Information Criteria in selecting the best
representation of a seasonal vector time model. All three information criteria reach the
same result. The smaller the information criterion is, the better the representation of the
multiplicative model. Finally, we have extended the univariate seasonal time series result
of Wei (1978b) to the multiplicative seasonal vector model.

One of the important issues in time series analysis is the decision of the time unit
that will be used. The data sources present many choices. For instance, one can choose

to work with monthly, quarterly or annual data. As the number of aggregation period
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becomes larger, the model structure tends to simplify. However, many studies show that

aggregation causes loss of information. Therefore, an interesting problem to study is to
decide an optimal time unit that should be used in time series analysis.

In this research we consider the cointegration test for aggregates with no drift and
trend terms in the series. The work can be extended to investigate the effects of
aggregation on the likelihood based cointegration test when there is a drift and/or a trend
in the series. Moreover, the cointegration test for aggregate series with restrictions on the

parameters can also be considered.
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APPENDIX

FORTRAN PROGRAMS
We now present the FORTRAN programs used to compute some of the test

statistics considered in our study.

1. Cointegration Test, Estimation of ECM Parameters and Test Non-Causality in
Cointegrated Systems for Aggregation in VAR(2): The user has to provide dimension
of the system k, VAR and VMA orders, P and Q and sample size N, differenced
aggregated series W, the aggregated time series X, in an input file. The logical MEAN
value should set to F. First two outputs give the trace statistic by using ECM with and
without considering aggregation effect. Next output gives the MLE estimators of the
ECM parameters for aggregates. At last the non-causality test result for the null
hypothesis that is first variable does not cause the second one. To be able to test second
variable does not cause the first one, user need to change U matrix as UO and UO matrix

as U. The code is the following:

dhkhkhkhkdhhhhhhhkddhdhdhhrbhhhhdrbdbdbhrdrhdrbrrdhdbdrhdrbdhrbrhrdhbhdhhdddii

* FORTRAN PROGRAM TO TEST COINTEGRATION *
* FIND MLES AND TEST NON~CAUSALITY FOR AGGREGATES *

e R KK Kk ek oK Rk ke R sk e e ek ok ke ok ke Rk ek Sk e ke Sk sk R ek ke Sk ek ke ok R sk ok ok sk sk ke ke ke sk ok ok ok ok ok ok k&

USE Numerical Libraries

* .. Parameters .
INTEGER KMAX, TK, IPMAX, IQMAX, NMAX, NPARMX, ICM, LWORK,
+ LIW
PARAMETER (KMAX=3, TK=KMAX, TPMAX=3, IOMAX=3, NMAX=500,
+ NPARMX= (IPMAX+IQMAX ) *KMAX*KMAX+KMAX, ICM=NPARMX,
+ LWORK=3000, LIW=500)
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INTEGER NIN, NOUT
PARAMETER (NIN=5)
* .. Local Scalars

DOUBLE PRECISION CGETOL, RLOGL

INTEGER I,IFAIL, IP, IPRINT, IQ, ISHOW, J, K, MAXCAL, N,
+ NITER, NPAR
LOGICAL EXACT, MEAN

* .. Local Arrays

DOUBLE PRECISION CM({ICM,NPARMX), G(NPARMX), PAR(NPARMX),
+ QQ (IK,KMAX), V(IK,NMAX), W(IK,NMAX), WORK (LWORK)

REAL X({170,2),DX(168,2),DDX(2,2),TDX(2,2),TXX(2,2),

+ GINV(2Z,2) ,XXINV(2,2),TXD(2,2),XD(2,168),TX(2,168),

+ 51(2,2),82{(2,2),83(2,2),54(2,2),Y{168,2),XT(168,2),

+ MX(168,2),XM(2,168),MMX(2,2),MINV(2,2),MDX(2,2),

+ MY (2,2),YMX(2,2),T00(2,2),T0P{(2,2),TPO(2,2),TPP(2,2),

+ T1(2,2),72(2,2),T3(2,2),S85(2,2),DMX(2,2),

+ A(le8,2),TA(2,168),YDA(2,2),YAD(2,2),TAA(2,2),ITAA(2,2),

+ Al{2,2),800(2,2),2(2,2),32(2,2),TAY(2,2),TYA{2,2),A2(2,2),

+ 50p(2,2),21(2,2),22(2,2),23(2,2),24(2,2) ,XMA(2,2),5A1(2,2),
+ sa2(2,2),s0E(2,2),H0E(2,2),SHO0E(2,2),XRA(2,2),5PE(Z,2),

+ HPE(2,2),SHPE(2,2),SHEP(2,2),MXA(2,2),SA3(2,2),8EE(2,2),

+ HEE(Z,2),IHEE(2,2),HEP(2,2),SA4(2,2),F0P(2,2),FP0(2,2),

+ SFOP(2,2),SFP0{(2,2),SF00(2,2),HED0(2,2),ISF00(2,2),8A5(2,2),
+ F00(2,2),FPP(2,2),SFPP(2,2),I8FPP(2,2),AS51(2,2),AS82(2,2),

+ AS3(2,2),ETXX(2,2),EVTXX{(2,2),TEV(2,2),TE(2,2),M11(2,2),

+ SE(2,2),TEM(2,2),S50M(2,2),XET(2,2),BET(2,1),ET(1,2),

+ PHI(2,2),AT(1,2),ATA,ALPHA(2,1),E(2,2),ABET (2,2),

+ ABEH({2,2),THE(2,2),THETA(2,2),GAM(2,2),G1(2,2),G2(2,2),
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+ G3(2,2),V1i(2,168),v2(2,168),V3(2,168),VAR(2,168),

+ TVAR(168,2),VV(2,2),SIGMA(2,2),YY(2,1),¥F1(2,1),F2(2,1),
+ ¥3(2,1),FORE(2,1),XF(2,1),RE5(2,1),F0(2,1),FERR(2Z2,1)},

+ u(z,1),00¢2,1),T00(1,2),TU0(1,2)},

& SAAZ2(2,2),SAA3(2,2),SKB(2,1),5BK(1,2),5001(1,2),

& SKK1(2,2),SAAl1(1,2),SKKB(2,2),ISKKB(2,2),SAKB(1,2),

& SKAB(2,1),8AK(1,2),S8AK3(1,2),SBA(l,2),

& SAK41{1,2),SAK5{2,1),SRK6(2,2),SAK7{2,2),SAK8(2,2)

REAL U(2,1),00{2,1),TU0U(1,2),TUO(1,2),

& ¥Y1(1,2),¥Y3(2,1),Y4(1,2),Y5(2,2),Y6(2,2),

& IY(2,2),wi(1,2), p1(1,2),P2(2,1),P3(2,2),P4(2,2),

& P5(2,2),wW3(1,2),

& Y7{(2,1),¥8(1,2),¥9{(2,2),Y10(2,2),Y¥Y11(2,2),Y¥12{2,2),
& ¥13(2,2),Y14(2,2},Y15(2,2),

& TBET(1,2),B1(1,1),B2,B3(2,2),B4(2,2),B5(2,2),

& B6(1,2),ETX(2,2),EVTX (2,2},

& ALPS(2,1), TALP{1l,2),D1{1,2),D3(2,2),

& DEV(2,2),DEX{(2,2},DE(2,2),ED(2,2),D0OM(2,2),XED(2,2)},
& DBET(1,2),BED(2,1),8ED(2,2),DEM(2,2)},223(2,2),224(2,2),
& SAAl(2,2),SAA2(2,2),SAA3(2,2)

COMPLEX EVAL(2), EVEC(2,2), EVALA(2), EVECA(2,2),

& EVALT(2), EVECT(Z,2),EVECAR(Z,2),EVALAR(2)
INTEGER IW{LIW)

LOGICAL PARHLD (NPARMX)

OPEN (NIN, FILE='C:\WAGE_ARZ.TXT',STATUS='OLD')
OPEN (NOUT,FILE='C:\RESULT.TXT', STATUS='"REPLACE")
* .. Executable Statements

* Skip heading in data file
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READ (NIN, *)

READ (NIN,*) K, IP, IQ, N, MEAN
CALL XO4ABF (1, NOUT)
WRITE (NOUT,*)
IF (K.GT.0 .AND. K.LE.KMAX .AND. IP.GE.0 .AND. IP.LE.IPMAX .AND.
+ IQ0.GE.0 .AND. IQ.LE.IQMAX) THEN
NPAR = (IP+IQ)*K*K
IF (MEAN) NPAR = NPAR + K
IF ((N.LE.NMAX) .AND. (NPAR.LE.NPARMX)) THEN

DO 20 I = 1, NPAR

PAR(I) = 0.0e0
PARHLD(I) = .FALSE.
20 CONTINUE
*
* Set all elements of Q to zero to use covariance matrix
* between the K time series as the initial estimate of the
* covariance matrix

po 60 g =1, K
DO 40 I = J, K
Q0(1I,J) = 0.0
40 CONTINUE
60 CONTINUE
DO 80 I =1, K

READ (NIN,*) (W(I,J),J=1,N)

80 CONTINUE
EXACT = .TRUE.
* ** Set IPRINT .GT. 0 to obtain intermediate output
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IPRINT = -1

CGETOL = 0.0001e0

MAXCAL = 40*NPAR* (NPAR+5)
ISHOW = 2

IFAIL = -1

CALL G13DCF(K,N,IP,IQ,MEAN, PAR,NPAR, QQ, IK, W, PARHLD, EXACT,
IPRINT,CGETOL, MAXCAL, ISHOW, NITER, RLOGL, V, G, CM,

ICM, WORK, LWORK, IW, LIW, IFAIL)

END IF

END IF

READ (NIN, *)

READ (NIN, *) ((X(I,J),Jd=1,K),I=1,N+2)

FIND THE TRANSPOSE OF THE ERROR MATRIX
Do 120 I=1,N
bo 100 J=1,K
A(I,J)=V(J,I)
CONTINUE
CONTINUE
A(l,1)=0
A(1,2)=0
FIND THE DIFFERENCES (1-B)X
DX{1,1)=0

DX{1,2}=0

DO 140 J=2,N
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DX (J,1)=X(J+2,1)-X{J+1,1)

DX (J,2)=X (J+2,2) =X (J+1,2)
140 CONTINUE
DO 160 IJ=1,N
Y(IJ,1)=X(IJ,1)
Y(IJ,2)=X(1J,2)
160  CONTINUE
C FIND THE DIFFERENCES (1-B)**2X
MX (1,1)=0
MX (1,2)=0
MX (2,1)=0
MX (2,2)=0
DO 180 J=3,HN
MX (J, 1)=X(J+1,1)-X(J, 1)
MX (J,2)=X(J+1,2)-X(J,2)
180 CONTINUE
C CALCULATION OF THE TRACE TEST STATISTIC FOR AGGREGATES
CALL TRNRR (N, K, DX, N, K, N, XD, K)
CALL MRRRR (K, N, XD, K, N, K, DX, N, K, K,DDX, K)
CALL MRRRR (K, N, XD, K, N, K, Y, N, K, K,TDX, K)
CALL TRNRR (N, K, Y, N, K, N, TX, K)
CALL MRRRR (K, N, TX, K, N, K, ¥, N, K, K,TXX, K)
CALL TRNRR (N, K, MX, N, K, N, XM, K)
CALL MRRRR (K, N, XM, K, N, K, MX, N, K, K,MMX, K)
CALL LINRG (K, MMX, K, MINV, K)
CALL MRRRR (K, N, XM, K, N, K, DX, N, K, K,MDX, K)
CALL TRNRR (K, K, MDX, K, K, K, DMX, K)

CALL MRRRR (K, N, XM, X, N, K, Y, N, K, K,XMY, K}
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CALL TRNRR (K, K, XMY, K, K, K, YMX, K)

CALL MRRRR (K, K, DMX, K, K, K, MINV, K, K, K, S1, K)
CALL MRRRR (K, K, S1, K, K, K, MDX, K, K, K, 82, K)
TOO=DDX-82

CALL MRRRR (K, K, S1, K, K, K, XMY, K, K, K, S$3, K)
TOP=TDX-S3

CALL TRNRR (K, X, TOP, K, K, K, TPO, K)

CALL MRRRR (K, K, ¥YMX, K, K, K, MINV, K, K, K, S4, K)
CALL MRRRR (K, K, S4, K, K, K, XMY, K, K, K, S5, K)
TPP=TXX-S5

CALL LINRG (K, T00, K, GINV, K)

CALL LINRG (K, TPP, K, XXINV, K)

CALL MRRRR (K, K, TPO, K, K, K, GINV, K, K, K, Tl, K)
CALL MRRRR (K, K, T1, X, K, K, TOP, K, K, K, T2, K)
CALL MRRRR (K, K, T2, K, K, K, XXINV, K, K, K, T3, K)
CALL EVCRG (K, T3, K, EVAL, EVEC, K)

CALL WRCRN (’EVAL', 1, K, EVAL, 1, 0)

CALL WRCRN ('EVEC', K, K, EVEC, K, 0)

C
TRACE=-N* {LOG{1-EVAL (1) j+LOG{1-EVAL(2}})
TRACE1=-N* (LOG(1-EVAL(Z2)} )}
C
WRITE (*,*) "TRACE(H=0):", TRACE
WRITE (*,*) "TRACE(H=1):",TRACEl
C

CALL TRNRR (N, K, A, N, K, N, TA, K)
CALL MRRRR (K, N, XD, K, N, K, A, N, K, K,YDA, K)

CALL TRNRR (K, K, YDA, K, K, K, YAD, K)
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CALL MRRRR (K, K,
CALL MRRRR (K, N,
CALL MRRRR (K, K,
HOE=YDA-SOE

CALL MRRRR (K, N,
CALL MRRRR (K, K,
CALL MRRRR (K, K,
HPE=XAA-SPE

CALL TRNRR (K, K,
CALL MRRRR (K, N,
CALL TRNRR (K, K,
CALL MRRRR (K, K,
CALL MRRRR (K, K,

HEE=TAA-SEE

DMX, K, K, K, MINV, K, K, K,SAl, K)
XM, K, N, K, A, N, K, K,XMA, K)

51, K, ¥, K, XMA, K, K, K,S0E, K)

Y, K, N, K, A, N, K, K,XAA, K)
YMX, K, K, K, MINV, K, K, K,SA2, K)

SA2, K, K, K, XMA, K, K, K,SPE, K)

HPE, K, K, K, HEP, K)

TA, K, N, K, A, N, K, K,TAA, K)
XMA, K, K, K, MXA, K)

MXA, K, K, K, MINV, K, K, K,SA3, K)

SA3, K, K, K, XMA, K, K, X,SEE, K)

CALL LINRG (K, HEE, K, IHEE, K)

CALL MRRRR (K, K,
CALL MRRRR (K, K,
CALL TRNRR (K, K,
SFOP=(TOP-FOP) /N
SFPO=(TPO-FP0) /N
CALL TRNRR (K, K,
CALL MRRRR (K, K,

SFO00={T00-F00) /N

HOE, K, K, K, IHEE, K, K, K,SA4, K)
SA4, K, K, K, HEP, K, K, K,FOP, K)

FOP, K, K, K, FPO, K)

HOE, K, K, K, HEO, K)

SA4, K, K, K, HEO, K, K, K,F00, K)

CALL LINRG (K, SF00, K, ISFO0, K)

CALL MRRRR (K, K,
CALL MRRRR (K, K,

SFPP=(TPPfFPP)/N

HPE, K, K, K, IHEE, K, K, K,SA53, K)

SA5, K, K, K, HEP, K, K, K,FPP, K)

CALL LINRG (K, SFPP, K, ISFKFPP, K)
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CALL MRRRR (K, K, SFPO, K, K, K, ISF00, K, K, K,AS1l, K)

CALL MRRRR (K, K, AS1, K, K, K, SFOP, K, K, K,AS2, K)
CALL MRRRR (K, K, ISFPP, K, K, K, AS2, K, K, K,AS3, K)
CALL EVCRG (K, AS3, K, EVALA, EVECA, K)

CALL WRCRN ('EVAL AGGREGATE', 1, K, EVALA, 1, 0)

CALL WRCRN ('EVEC AGGREGATE', K, K, EVECA, K, 0)

o
TRACE AGG=-N* (LOG{1-EVALA (1)) +LOG(1-EVALA{2)))
TRACE1 AGG=-N*(LOG(1-EVALA(2)))

C
WRITE (*,*) "TRACE AGG (H=0):", TRACE AGG
WRITE (*,*) "TRACE AGG(H=1):",TRACEl AGG

C FIND THE ESTIMATES OF ECM
CALL EVCRG (K, SFPP, K, EVALT, EVECT, K)
ETXX(1,1)=EVALT(1)

ETXX (1,2)=0.0
ETXX(2,1)=0.0
ETXX (2,2)=EVALT (2)

c
EVTXX (1,1)=EVECT(1,1)

EVTXX (1, 2)=EVECT (1, 2)
EVTXX (2,1)=EVECT (2, 1)
EVTXX (2,2)=EVECT (2, 2)

c
CALL TRNRR (K, K, EVTXX, K, K, K, TEV, K)

CALL MRRRR (K, K, EVTXX, K, K, K, ETXX, K, K, K, TE, K)
CALL MRRRR (K, X, TE, K, K, K, TEV, K, K, K, M11l, K)
o FIND THE (-0.5)TH POWER OF M1l
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SE(1,1)=ETXX(1,1)**(-0.5)

SE(1,2)=ETXX(1,2)

SE({2,1)=SE(1,2)

SE(2,2)=ETXX(2,2)**(=0.5)

CALL MRRRR (K, K, EVTXX, K, K, K, SE, K, K, K, TEM, K)

CALL MRRRR (K, K, TEM, K, K, K, TEV, K, K, K, SQM, K)

C
E{1,1)=EVECA{1,1)
E(1,2)=EVECA(1,2)
E(2,1)=EVECA(2,1)
E(2,2)=EVEC(2,2)

c
CALL MRRRR (K, K, SOM, ¥, X, K, E, K, K, K , XET, K)
BET (1,1)=XET(1,2)
BET (2, 1) =XET (2, 2)
CALL WRRRN ('BETA', K, 1, BET, K, 0)

C ESTIMATION OF THE ADJUSTMENT VECTOR
CALL TRNRR (K, 1, BET, K, 1, K, ET, 1)
CALL MRRRR (K, K, SFOP, K, K, 1, BET, K, K, 1, ALPHA, K)
CALL WRRRN ('ALPHA', K, 1, ALPHA, K, 0)

c ESTIMATION OF PHI
CALL MRRRR (K, 1, ALPHA, K, 1, K, ET, 1, K, K, PHI, K)
CALL WRRRN ('PHI', K, K, PHI, K, 0)

c ESTIMATION OF THETA

CALL MRRRR (K, 1, ALPHA, K, 1, K, ET, 1, K, K, ABET, K)
CALL MRRRR (K, K, ABET, K, K, K, HPE, K, K, K, ABEH, K)
THE=ABEH-HOE

CALL MRRRR (K, K, THE, K, K, K, IHEE, K, K, K, THETA, K}
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CALL WRRRN ('THETA', K, K, THETA, K, 0)

C ESTIMATION OF GAMMA
CALL MRRRR (K, K, PHI, K, K, K, XMY, K, K, K, G1, K)
CALL MRRRR (K, K, THETA, K, K, K, MXA, K, K, K, G2, K)
G3=DMX-G1+G2
CALL MRRRR (K, K, G3, K, K, K, MINV, K, K, K, GAM, K)
CALL WRRRN ('GAMMA', K, K, GAM, K, 0)
C ESTIMATION OF THE VARIANCE
CALL MRRRR (K, K, PHI, K, K, N, TX, K, K, N, V1, K)
CALL MRRRR (K, K, GAM, K, K, N, XM, K, K, N, V2, K)
CALL MRRRR (K, K, THETA, K, K, N, TA, K, K, N, V3, K)
VAR=XD-V1-V2+V3
CALL TRNRR (K, N, VAR, K, N, K, TVAR, N)
CALL MRRRR (K, N, VAR, K, N, K, TVAR, N, K, K, VV, K)
SIGMA=VV/N
CALL WRRRN ('SIGMA', K, K, SIGMA, K, 0)
o EIGENVALUES FOR THE NON-CAUSALITY TEST WITH COINTEGRATION FOR
AGGREGATES
Uo(1,1)=1
U0(2,1)=0
U(1,1)=0
U(2,1)=1
CALL TRNRR (K, 1, UO, K, 1, K, TUD, 1)
CALL TRNRR (K, 1, U, K, 1, K, TUU, 1)
CALL MRRRR (K, K, SFPO, K, K, 1, U, K, K, 1, SKB, K)
CALL TRNRR (K, 1, SKB, K, 1, K, SBK, 1)
CALL MRRRR (1, X, TUU, 1, K, K, SF00, K, 1, K, S001, 1)

CALL MRRRR (1, K, 8001, 1, K, 1, U, K, 1, 1, SBB, 1)
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CALL MRRRR (K, 1, SKB, K, 1, K, SBK, 1, K, K, SKKl, K)
SKKB=TXX~-SKK1/SBB

CALL LINRG (K, SKKB, K, ISKKB, K)

CALL MRRRR (1, K, TUO, 1, K, K, SF00, K, 1, K, SAAlL, 1)
CALL MRRRR (1, K, SAAl, 1, K, 1, U0, K, 1, 1, sSapa, 1)
CALL MRRRR (1, K, SAAl, 1, X, 1, U, K, 1, 1, SAB, 1)
SAAB=SAR-SAB**2/SBB

CALL MRRRR {1, K, TUO, 1, X, K,SFOP, K, 1, K, SAK, 1)
CALL MRRRR (1, K, TUU, 1, K, K, SFOP, K, 1, K, SBK, 1}
CALL MRRRR (1, 1, SAB, 1, 1, K, SBK, 1, 1, K, SAK3, 1)
SAK4=SAK-SAK3/SBB

CALL TRNRR (1, K, SAK4, 1, K, 1, SAK5, K)

CALL MRRRR (K, 1, SAKS, K, 1, K, SRK4, 1, X, K, SBK6, K)
SAK7=SAK6/SAAB

CALL MRRRR (K, K, SAK7, K, K, K, ISKKB, K, K, K, SAKS, K)
CALL EVCRG (K, SRK8, K, EVALAR, EVECAR, K)

CALL WRCRN ('EVAL AGGREGATE', 1, K, EVALAR, 1, 0)

CALL WRCRN ('EVEC AGGREGATE', K, K, EVECAR, K, 0)

cC
TRACE AGGR=-N* (LOG (1-EVALAR (1)) +LOG (1-EVALAR{2) ) )
TRACE1 AGGR=-N* (LOG (1-EVALAR(2)))
c FIND THE TEST STATICTIC FOR NON-CAUSALITY
TESTAT HO=N*LOG{ (1-EVALAR{1))/{1-EVALA(1)))
C
WRITE (*,*) PTESTAT HO:", TESTAT HD
C FIND THE P-VALUE OF THE TEST

CALL UMACH (2, NOUT)

DF = 1.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



216
Pl= 1-CHIDF (TESTAT HO,DF)

WRITE (*,*) P1
CLOSE (NOUT)
CLOSE (NIN
STOP

END

2. Simulation Program in order to Test Non-Causality in Cointegrated Systems for
Aggregation: The output gives the percentage of rejection for the null hypothesis that is
first variable does not cause the second one. To be able to test second variable does not
cause the first one, user need to change U matrix as UO and UO matrix as U. The code is

the following:

hkhkkhhkhkhkhhdbdhbhdhhbdhdbdhbdbdhbddhhdbddbdhbhbdhdddrdhrdrhbdbrhrhbdhhhdbdhbhbdhdhbddhd

* FORTRAN SIMULATION PROGRAM IN ORDER TO TEST *
* NON-CAUSALITY IN COINTEGRATED SYSTEMS FOR AGGREGATES *

kkhkkkkhdhkhkhkdhhkdkdhdbdkdhbbhbhbhbhrhhbhbhbhhbhhhhbhhbhhhbhbhohrdbdrdhddddhddhddhhdhdddhdrdxi

USE Numerical Libraries

* .. Parameters

PARAMETER (NO=1300,MI=2 NE=NO+MI, NN=NO-100, NOM=NN/MI, NM1=NOM+MI)
* .. Local Scalars

INTEGER K, N, NM, LIM, COUNT, ISEED, ICOUNT
* .. Local Arrays ..

REAL Z{NO,2),X(NN,2),E(NE,2),C0V{(2,2),,RS81IG{(2,2),PHI(2,2),

THETA(2,2),A(NM1,2),XA{NOM, 2),YA(NML, 2),DY (NOM, 2),

YD (2,NOM),DDY (2,2}, TDY(2,2),TYD(2,2),TY (2, NOM),
TYY(2,2),TA(2,NCM),YDA(2,2),YAD(2,2),TAA(2,2),
ITAA(2,2),R1(2,2),800(2,2),20(2,2),1IZ2{(2,2),TAY(2,2),
TYA(2,2),RA2(2,2),50P(2,2),8P0(2,2),A3(2,2),SPP{(2,2),
21(2,2),22(2,2),23(2,2),24(2,2},8A1(2,2},0(2,1)},

U0 (2,1),TU0(1,2),TU00(1,2),Y¥1(1,2),¥2,¥Y3(2,1),Y41(1,2),
¥5{2,2),¥6{2,2),I¥{2,2),Y7{2,1),¥8(1,2),¥9(2,2),
Y10(2,2),Y11(2,2),Y¥12(2,2),Y13(2,2),T1(1,2),T2(2,1),
T3(2,2),T4(2,2),T5{(2,2),W1(1,2),W2, TESTAT,ALPHAO

COMPLEX EVALA(2), EVECA(2,2),EVALAR(2), EVECAR(2,2)
Executable Statements

RN R R R R

*

K=2
N=1300
* SET THE AR PARAMETER
PHI(1,1)=1.0
PHI(1,2)=0.0
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PHI({2,1)=0.6
PHI(2,2)=0.0
C SET THE ERROR COVARIANCE MATRIX
covi{l, 1) = 2
Cov(l,2) = 0.5
coviz,1} = 0.5
cov(z,2) = 1.5
C SET U AND U orthogenal VECTORS
U(1,1)=0
U(2,1)=1
Uo(1,1)=1
uc(2,1)=0
C
ICOUNT=0
* SET THE NUMBER OF ITERATIONS
LIM=10000
C GENERATION OF ERROR TERMS
DO 1 L=1,LIM
IF (L.GT.1) THEN
N=N+100
ENDIF
c OBTAIN THE CHOLESKY FACTORIZATION
CALL CHFAC (K, COV, 2z, 0.00001, IRANK, RSIG, K)
C INITIALIZE SEED OF RANDOM NUMBER GENERATOR

CALL SYSTEM CLOCK (COUNT)

ISEED=COUNT

CALL RNSET (ISEED)

CALL RNMVN (N, K, RSIG, K, E, N)

c DERIVATION OF TIME SERIES VECTOR 7
z2(1,1)=E(1,1)
Z{1,2)=E(1,2)

DO 10 I=2,N
Z{1,1)=PHI(1,1)*Z(I-1,1)+PHI(1,2}*Z(1~1,2)+E(I,1)
Z(I,2)=PHI(2,1)*Z(1I-1,1)+PHI(2,2)*2(I-1,2)+E(I,2)

10 CONTINUE
C ELIMINATE THE EFFECT OF INITIAL OBSERVATION
N=N~100

DO 20 I=1,N
X(I,1)=Z2(1I+100,1)

X{1,2)y=2(1+100,2)
20 CONTINUE

C SAMPLE SIZE FOR THE AGGREGATES
NM=N/M
C THETA VALUES
IF (M.EQ.2) THEN
TE=0.151
ELSE IF (M.EQ.3) THEN
TE=0.1917
ELSE IF (M.EQ.5) THEN
TE=0.215
ELSE IF (M.EQ.6) THEN
TE=0.22
ELSE IF (M.EQ.10) THEN
TE=0.225
ENDIF
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THETA (1, 1) =TE
THETA (1, 2)=0
THETA (2,1)=0
THETA (2, 2)=TE
C OBTAIN THE THEORETICAL ERRORS FOR THE AGGREGATES FOR M=2,3,5,6,10
IF {M.EQ.2) THEN
DO 60 II=1,NM
IF ((II-1).LT.1) THEN
A{II-1,1)=0
A(II-1,2)=0
ENDIF
DO 50 LJ=M, (2*M-1)
IF ({II*M-LJ).LT.1) THEN
E(II*M-LJ,1)=0
E(II*M-LJ,2)=0
ENDIF
50 CONTINUE
A(II,1)=THETA(1,1)*A(ITI-1,1)+E(IT*M, 1)+
(24PHI (1, 1)) *E(II*M-1,1)+
(2+PHI (1,2)) *E(II*M-1,2)+
(1+2*PHI(1,1))*E(II*M-2,1)+
(1+42*PHI{1,2))*E{II*M-2,2)+
PHI(1,1)*E(II*M-3,1)+
PHI (1,2} *E(II*M-3,2)
A(II,2)=THETA(2,2)*A(II-1,2)+E(TI*M,2)+
(2+PHI(2,1))*E(II*M~-1,1)+
(2+PHI(2,2) ) *E(II*M-1,2)+
(142*PHI(2,1))*E(II*M-2,1)+
(1+2*PHI(2,2) ) *E(II*M-2,2)+
PHI(2,1)*E(II*M=3,1)+
& PHI(2,2)*E(II*M-3,2)
60 CONTINUE
ELSE IF (M.EQ.3) THEN
DO 80 II=1,NM
IF ((II-1).LT.1) THEN
A(II-1,1)=0
A(II-1,2)=0
ENDIF
DO 70 LJ=M, (2*M-1)
IF {{II*M-LJ).LT.1) THEN
E(II*M-LJ,1)=0
E(II*M-LJ,2)=0

R R R

R R R

ENDIF

70 CONTINUE

A(TI,1)=THETA(1l,1)*A(II-1,1)+E(II*M, 1)+
(2+PHI (1,1))*E(II*M-1,1)+
(2+PHI(1,2))*E(II*M-1,2)+
(3+2*PHI(1,1))*E(II*M-2,1)+
(34+2*PHI{1,2) ) *E(II*M-2,2)+
(24+3*PHI(1,1))*E(II*M-3,1)+
(243*PHI(1,2) ) *E{II*M-3,2)+
(1+2*PHI(1,1))*E(II*M~4,1)+
(1+2*PHI(1,2))*E(II*M-4,2)+
PHI(1,1)*E(II*M-5,1)+
PHI(1,2)*E(II*M-5,2)

@@
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A(II,2)=THETA(2,2)*A(II-1,2)+E(II*M,2)+
(2+4PHI (2,1) ) *E(II*M-1,1)+
(24+4PHI (2,2) ) *E(II*M-1,2)+
{34+2*PHI(2,1) }*E{II*M-2,1}+
(342*PHI (2,2) ) *E(II*M-2,2)+
(243*PHT (2,1))*E(II*M-3,1)}+
(24+3*PHI(2,2))*E(I1I*M-3,2)+
(1+2*PHI (2,1))*E{II*M-4,1)+
(1+2*PHI(2,2)) *E(II*M-4,2)+
PHI(2,1)*E(II*M-5,1)+
PHI(2,2)*E{II*M-5,2)

R R R Ry 2R

80 CONTINUE
ELSE IF (M.EQ.5) THEN
DO 100 II=1,NM
IF ((II-1).LT.1) THEN
A(II-1,1)=0
A(II-1,2)=0
ENDIF
DO 90 LJ=M, (2*M-1)
IF ({(II*M-LJ).LT.1) THEN
E(II*M-LJ,1)=0
E(II*M-1J,2)=0
ENDIF
90 CONTINUE
A(II,1)=THETA(1,1)*A(ITI-1,1)+E(II*M, 1)+
(2+PHI(1,1))*E(II*M-1,1)+
(2+PHI(1,2))*E(II*M-1,2)+
(3+2*%PHT (1, 1)) *E(TI*M-2,1)+
(3+2*PHI(1,2))*E(II*M-2,2)+
(4+3*PHI (1,1))*E(II*M-3,1)+
{4+3*PHI(1,2) ) *E{II*M-3,2)+
(54+44*PHI(1,1))*E(II*M-4,1)+
(5+4*PHI (1,2) ) *E(II*M-4,2)+
(4+5*PHI(1,1))*E(II*M-5,1)+
(4+5*PHI (1,2))*E{II*M-5,2)+
(3+4*PHI (1,1)) *E(II*M-6,1)+
(3+4*PHI (1,2)) *E(II*M-6,2)+
(2+3*PHI(1,1))*E(II*M=-7,1)+
(2+3*PHI(1,2))*E(II*M-7,2)+
{142*PHI(1,1))*E(II*M-8,1)+
(1+2*PHI (1,2))*E(II*M-8,2)+
PHI(1,1)*E(II*M-9,1)+
PHI (1,2)*E(II*M-9,2)
A(II,2)=THETA(2,2)*A(II-1,2)+E(II*M,2)+
(2+PHI(2,1))*E(II*M-1,1)+
(24PHI (2,2))*E(II*M-1,2)+
(3+42*PHI (2, 1)) *E(IT*M-2,1)+
(342*PHI (2,2) ) *E(II*M-2,2)+
{4+43*PHI(2,1))*E(II*M-3,1)+
(443*PHI(2,2))*E(II*M-3,2)+
(5+4*PHI (2, 1)) *E(II*M-4,1)+
(5+4*PHI (2,2)) *E (II*M=4,2)+
(4+5*PHT (2,1)) *E(II*M-5,1)+
(445*PHI (2,2) ) *E(II*M-5,2)+
(3+4*PHI (2,1))*E(II*M-6,1)+

2R R R R R R R

2R RN R R ™R
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(3+4*PHI (2,2)) *E(II*M~6,2)+
(2+43*PHI (2, 1)) *E(II*M-7,1)+
(2+3*%PHI(2,2)) *E (II*M-7,2)+
(1+2%PHI(2,1) ) *E(II*M-8,1)+
(1+42*PHI (2,2) ) *E(II*M-8,2)+
PHI(2,1)*E(II*M-9,1)+
PHI(2,2)*E(II*M-9,2)

R o

100 CONTINUE
ELSE IF (M.EQ.6) THEN
DO 120 IT=1,NM
IF ((II-1).LT.1) THEN
A(II-1,1)=0
A{II-1,2)=0
ENDIF
DO 110 LJ=M, {2*M-1)
IF ((II*M-LJ).LT.1) THEN
E(II*M-LJ,1)=0
E(II*M-LJ, 2)=0
ENDIF
110 CONTINUE
A(II,1)=THETA(1l,1)*A(II-1,1)+E(II*M,1)+
(24+PHI(1,1))*E(II*M-1,1)+
(24PHI (1,2))*E(II*M-1,2)+
(342*PHI(1,1)) *E(II*M-2,1)+
(3+2*PHI(1,2) ) *E(II*M-2,2)+
(4+3*PHI (1,1))*E (II*M-3,1)+
(4+3*PHI(1,2) ) *E{II*M=-3,2)+
(54+4*PHI (1, 1)) *E(II*M-4,1)+
(5+4*PHI (1,2) ) *E(II*M-4,2)+
(6+5*PHI(1,1))*E(II*M-5,1)+
(6+5*PHI (1,2) ) *E(II*M=-5,2)+
(5+6*PHI (1,1))*E{II*M-6,1)+
(5+6*PHI (1,2)) *E(IT*M~6,2)+
(4+5*PHT (1, 1)) *E (TT*M-7, 1)+
(4+5*PHI (1,2) ) *E(II*M-7,2)+
(3+4*PHI(1,1) )} *E(II*M-8,1)+
(3+4*PHI (1,2))*E(II*M-8,2)+
{243*PHI(1,1))*E(II*M-9,1)+
(2+3*PHI(1,2) ) *E(II*M-9,2)+
(1+2*PHI (1,1))*E(II*M-10,1)+
(1+2*PHI(1,2))*E(II*M-10,2)+
PHI(1,1)*E(II*M-11,1)+
PHTI (1,2)*E(II*M-11,2)
A(II,2)=THETA(2,2)*A(II-1,2)+E(II*M,2)+
(24PHI(1,1))*E(II*M-1,1}+
(24PHI(1,2)) *E(II*M-1,2)+
{3+2*PHI(1,1))*E{II*M-2,1)+
(3+2*PHI (1,2) ) *E(II*M-2,2)+
(443*PHI (1, 1)) *E(ITI*M-3,1)+
(4+3*PHI (1,2))*E(II*M-3,2)+
(544*PHI(1,1))*E(II*M-4,1)+
(5+4*PHI (1,2))*E(II*M-4,2)+
(6+5*PHI (1, 1)) *E (II*M-5,1)+
(6+5*PHI(1,2))*E(II*M-5,2)+
(5+6*PHI (1,1))*E(ITI*M-6,1)+

DRR DR @R RN

27 21 v 2 2 @ 29 o 2
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(5+6*PHI (1,2) ) *E(I1*M-6,2)+
(4+5*PHTI (1,1) ) *E(II*M-7,1)+
(4+5*PHI (1,2)) *E(II*M-7,2)+
(3+4*PHI (1, 1)) *E(IT*M-8,1)+
(3+4*PHI(1,2))*E(II*M-8,2)+
(2+3*PHI(1,1)) *E(II*M-9,1)+
(2+3*PHI (1,2)) *E(II*M-9,2)+
(1+2*PHI(1,1))*E(II*M-10,1)+
(142*PHT (1,2) ) *E(TT*M-10,2)+
PHI (1,1)*E(ITI*M-11,1)+
PHI(1,2)*E(II*M-11,2)

B2 2R R R

120 CONTINUE
ELSE IF {M.EQ.10) THEN
DO 140 II=1,NM
IF ((II-1).LT.
A(II-1,1
A(II-1,2)=
ENDIF
DO 130 LJ=M, (2*M-1)
IF {{II*M~LJ).LT.1) THEN
E(II*M-LJ,1)=0
E{II*M-1J,2)=0
ENDIF
130 CONTINUE
A(II,1)=THETA(1,1)*A(II-1,1)+E({II*M, 1)+
(2+PHI(1,1))*E(II*M-1,1)+
(2+PHTI (1,2) ) *E(IT*M-1,2)+
(3+42*%PHI (1, 1)) *E (TT*M-2,1)+
{3+2*PHI(1,2) ) *E(II*M-2,2)+
(4+3*PHI(1,1))*E(II*M-3,1)+
(4+3*%PHI (1,2) ) *E{II*M-3,2)+
(5+44*PHI (1, 1)) *E(II*M-4,1)+
(5+4*PHI(1,2) ) *B(II*M-4,2)+
(6+5*PHI (1,1))*E(II*M-5,1)+
(6+5*PHI(1,2))*E(II*M-5,2)+
(7+6*PHI(1,1))*E(II*M-6,1)+
(7+6*PHI (1,2) ) *E (II*M-6,2)+
(8+7*PHI(1,1))*E{(II*M-7,1)+
(8+7*PHI(1,2)) *E(II*M-7,2)+
{9+B*PHI(1,1) ) *E{II*M-8,1)+
(9+8*PHI(1,2)) *E(II*M-8,2)+
(1049*PHI(1,1) ) *E(II*M-9,1}+
(10+9*PHTI (1,2) ) *E (II*M-9,2)+
(9+10*PHI(1,1))*E(II*M-10,1)+
(9+10*PHI(1,2)) *E(II*M-10,2)+
(8+9*PHI (1,1))*E (II*M-11,1)+
(B+9*PHI (1,2) ) *E{II*M~-11,2)+
(7+8*PHI (1,1))*E(II*M-12,1)+
(7+8*PHI (1,2) ) *E({II+*M-12,2)+
(6+7*PHI (1,1))*E(II*M-13,1)+
(6+7*PHI(1,2) ) *E(II*M-13,2)+
(5+6*PHI (1,1))*E(II*M-14,1)+
(5+6*PHI (1,2))*E(II*M-14,2)+
(4+5*PHI (1,1) ) *E(IT*M-15,1)+
(4+5*PHI(1,2) ) *E(II*M-15,2)+

R 2R RN RR R 2R
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& (3+4*PHI (1, 1)) *E(II*M-16,1)+
& (3+4*PHI (1,2)) *E(II*M-16,2)+
& (243*PHI (1,1)) *E(II*M-17,1)+
& (2+3*PHI(1,2)) *E(II*M-17,2)+
& (142*PHI(1,1))*E(II*M-18,1)+
& (142*%PHI(1,2))*E(II*M-18,2)+
& PHI(1,1)*E(II*M-19,1)+

& PHI(1,2)*E(II*M-19,2)

A(II,2)=THETA(2,2) A(II-1,2)+E(II*M,2)+

& (24PHI (2,1)) *E(II*M-1,1)+
& (2+4PHI (2,2) ) *E(II*M-1,2)+
& (3+2*PHI (2, 1))*E (II*M-2, 1)+
& (3+2%PHI (2,2) ) *E(II*M-2,2)+
& (4+3*PHI(2,1))*E(II*M 3,1)+
& (443*PHI (2,2) ) *E(II*M-3,2)+
& (5+4*PHI (2,1)) *E(II*M-4,1)+
& (5+4*PHI (2,2) ) *E (TI*M-4,2)+
& (6+45*PHT (2, 1)) *E(II*M-5,1)+
& (6+5*PHI (2,2))*E (II*M-5,2)+
& (7+6*PHI (2,1) ) *E(II*M-6,1)+
& (7+6*PHI (2,2) ) *E (II*M-6, 2) +
& (8+7*PHI (2,1))*E(II*M-7,1)+
& (8+47*PHI (2,2))*E (II*M-7,2)+
& (9+8*PHI (2,1)) *E(II*M-8, 1)+
& (9+8*PHI (2,2) ) *E (II*M-8,2)+
& (1049*PHTI (2,1))*E(II*M-9,1)+
& (10+9*PHI (2,2) ) *E(II*M-9,2)+
& (9+10*PHI (2,1))*E(II*M-10,1)+
& (9+10*PHI (2,2)) *E(II*M-10,2)+
& (8+9*PHI (2,1))*E(II*M-11,1)+
& (8+9*PHI (2,2))*E (II*M-11,2)+
& (7+8*PHI (2, 1)) *E(II*M-12,1)+
& (7+48*PHI(2,2) ) *E(II*M-12,2)+
& (6+7*PHI (2,1))*E(II*M-13, 1)+
& (6+7*PHI (2,2) ) *E(II*M-13,2)+
& (546*PHI (2,1))*E (IT*M-14,1)+
& (5+6*PHI (2,2) ) *E(II*M-14,2)+
& (4+5*PHI (2,1))*E(II*M-15,1)+
& (4+5%PHI (2,2) ) *E (II*M-15,2)+
& (3+4*PHI(2,1))*E(II*M-16,1)+
& (3+4*PHI (2,2) ) *E (II*M-16,2)+
& (2+43*PHI (2,1)) *E(II*M-17,1)+
& (243*PHI (2,2)) *E (II*M-17,2)+
& (1+2*PHI (2,1))*E(II*M-18,1)+
& (1+2*PHI (2,2)) *E (II*M-18,2)+
& PHI(2,1)*E(II*M-19,1)+
& PHI(2,2)*E(II*M-19,2)

140 CONTINUE

ENDIF
C

DO 105 II=1,NM
IF ((II-1).LT.1) THEN
A(II-1,1)=
A(II-1,2)=0
ENDIF
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DO 95 LJ=M, (2*M-1)
IF ((II*M-LJ).LT.1) THEN
E(II*M-LJ,1)=0
E(II*M-1J,2)=0
ENDIF
95 CONTINUE
A(II,1)=THETA(1l,1)*A(II-1,1)+E(II*M,1)+

& (2+4PHI(1,1))*E(II*M-1,1)+
& (24PHT (1,2) ) *E(II*M-1,2)+
& (3+2*PHI(1,1)) E(II*M-2,1)+
& (342*PHI(1,2) ) *E{II*M-2,2)+
& (443*PHI (1,1))* E(II*M—3 1)+
& (A+3*PHI (1,2)) *E(II*M-3,2)+
& (5+4*PHI (1,1))*E(II*M-4,1)+
& (5+4*PHI (1,2))*E(II*M-4,2)+
& (A+5*PHI (1,1)) *E(II*M-5,1)+
& (445*PHI (1,2) ) *E (II*M-5,2) +
& (3+44*PHI (1,1) ) *E(II*M-6,1)+
& (3+4*PHI (1,2)) *E (II*M-6,2)+
& (243*PHI(1,1))*E(IT*M-7,1)+
& (2+43*PHI(1,2) ) *E(II*M-7,2)+
& (142*PHI(1,1))*E(II*M-8,1)+
& (1+2*PHI(1,2)) *E (II*M-8,2)+
& PHI (1,1)*E(II*M-9,1)+
& PHI(1,2)*E(II*M-9,2)
A(II,2)=THETA(2,2)*A(II-1,2)+E(II*M,2)+
& (2+PHI(2,1))*E(II*M-1,1)+
& (24PHI (2,2)) *E(II*M-1,2)+
& (3+2*PHI(2,1)) *E (TI*M-2,1)+
& (3+2*PHI (2,2)) *E (II*M-2,2)+
& (443*PHI(2,1)) *E{II*M-3,1)+
& (4+3*PHI (2,2) ) *E (II*M=-3,2)+
& (544*PHI (2,1))*E(II*M-4,1)+
& (5+44*PHI (2,2)) *E(II*M-4,2)+
& (4+5*%PHI (2,1) ) *E(II*M-5,1)+
& (4+5*PHI(2,2) ) *E(II*M-5,2)+
& (3+4*PHI (2,1) ) *E(II*M-6,1)+
& (3+4*PHI(2,2) ) *E(II*M-6,2)+
& (243*PHI(2,1))*E(II*M-7,1)+
& (243*PHI (2,2) ) *E (II*M-7,2) +
& (1+2*PHI(2,1)) *E(II*M-8,1)+
& (142*PHI (2,2)) *E (II*M-8,2) +
& PHI(2,1)*E(II*M-9,1)+
& PHI (2,2) *E(II*M-9,2)
105 CONTINUE
C
c OBTAIN THE AGGREGATES
A(1,1)=0
XA(1,2)=0
DO 100 I=1,NM
DO 110 J=1,M
A(T,1)=XA(I,1)+X(I*M-J+1,1)
XA(I,2)=XA(T,2)+X {I*M-J+1, 2)
110 CONTINUE '
100 CONTINUE
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YA(1,1)=0
YA(1,2)=0
DO 120 I=1,NM
YA(I+1,1)=XA(I,1)
YA(I+1,2)=XA(I,2)
120  CONTINUE

C FIND THE DIFFERENCED SERIES (1-B)YA (L)
DY (1,1)=0
DY (1,2)=0

DO 130 J=1,NM
DY (J,1)=YA(J,1)-YA(J-1,1)
DY (J,2)=YA(J,2)-YA(J-1,2)
130 CONTINUE
DO 140 IL=1,NM
XA(IL,1)=YA(IL,1)
XA (IL,2)=YA(IL,2)
140  CONTINUE
C FIND THE EIGENVALUES FOR THE DENOMINATOR
CALL TRNRR (NM, K, DY, NM, K, NM, YD, K)
CALL MRRRR (K, NM, YD, K, NM, K, DY, NM, K, K,DDY, K)
CALL MRRRR (K, NM, YD, K, NM, K, XA, NM, K, K,TDY, K)
({
{

CALL TRNRR (NM, K, XA, NM, K, NM, TY, K)
CALL MRRRR (K, NM, TY, K, NM, K, XA, NM, K, K,TYY, K)
CALL TRNRR (NM, K, A, NM, K, NM, TA, K)
CALL MRRRR (K, NM, YD, K, NM, K, A, NM, K, K,YDA, K)
CALL TRNRR (K, K, YDA, K, K, K, YAD, K)
CALL MRRRR (K, NM, TA, K, NM, K, A, NM, K, K,TAA, K)
CALL LINRG (K, TRA, K, ITAA, K)
CALL MRRRR (K, K, YDA, K, K, K, ITAA, K, K, K,Al, K)
CALL MRRRR (K, K, Al, K, K, K, YAD, K, K, K,S00, K)
70=DDY-S00
CALL LINRG (K, 20, K, IZ, K)
CALL MRRRR (K, NM, TA, K, NM, K, XA, NM, K, K,TAY, K)
CALL TRNRR (K, K, TAY, K, K, K, TYA, K)
CALL MRRRR (K, K, YDA, K, K, K, ITAA, K, K, K,A2, K)
CALL MRRRR (K, K, A2, K, K, K, TAY, K, K, K,SOP, K)
CALL TRNRR (K, K, SOP, K, K, K, SPO, K)
CALL MRRRR (K, K, TYA, K, K, K, ITRA, K, K, K,A3, K)
CALL MRRRR (K, K, A3, K, K, K, TAY, K, K, K,SPP, K)
Z1=TDY-SOP
CALL TRNRR (K, K, Z1, K, K, K, 22, K)
73=TYY-SPP
CALL LINRG (K, Z3, K, 24, K)
CALL MRRRR (K, K, 22, K, K, K, IZ, K, K, K, SAl, K)
CALL MRRRR (K, K, SAl, K, K, K, 21, K, K, K, SA2, K)
CALL MRRRR (K, K, SA2, K, K, K, Z4, K, K, K, SA3, K)
CALL EVCRG (K, SA3, K, EVALA, EVECA, K)

C FIND THE EIGENVALUES FOR THE NUMERATOR
CALL TRNRR (K, 1, UO, K, 1, K, TUO, 1)
CALL TRNRR (K, 1, U, K, 1, K, TUU, 1)
CALL MRRRR (1, K, TUU, 1, K, K, 20, K, 1, K,Y1, 1)
CALL MRRRR (1, K, Y1, 1, X, 1, U, K, 1, 1,Y2, 1)
CALL MRRRR (K, K, 22, K, K, 1, U, K, K, 1,Y3, K)
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CALL TRNRR (K, 1, ¥3, K, 1, K, Y4, 1)

CALL MRRRR (K, 1, ¥3, K, 1, K, Y4, 1, K, K, Y5, K)
Y6=TYY~(1/Y2)*Y5

CALL LINRG (K, Y6, K, IY, K)

CALL MRRRR (K, K, Z0, K, K, 1, U, K, K, 1,Y7, K)
CALL TRNRR (K, 1, Y7, X, 1, K, ¥8, 1)

CALL MRRRR (K, 1, Y7, K, 1, K, Y8, 1, XK, X, Y9, K)
Y10=20-Y9/Y2

CALL MRRRR (K, 1, Y7, K, 1, K, Y4, 1, K, K, Y11, K)
Y12=21~Y11/Y2

CALL TRNRR (K, X, Y12, K, K, K, Y13, K)

CALL MRRRR (1, K, TUO, 1, K, K, Y12, K, 1, K, T1, 1)
CALL TRNRR (1, K, T1, 1, K, 1, T2, K)

CALL MRRRR (K, 1, T2, K, 1, K, T1, 1, K, K, T3, K)
CALL MRRRR (1, K, TUO, 1, K, K, 20, K, 1, K, Wl, 1)
CALL MRRRR (1, K, W1, 1, X, 1, UO, K, 1, 1, W2, 1)
T4=T3/W2

CALL MRRRR (K, K, T4, K, K, K, IY, K, K, K, T5, K)
CALL EVCRG (K, TS5, K, EVALAR, EVECAR, K)

C FIND THE TEST STATISTIC FOR NON-CAUSALITY WITH COINTEGRATION FOR
AGGREGATES
TESTAT=NM*LOG ( (1-EVALAR (1) )/ (1-EVALA(1)))
C FIND THE CHI-SQUARE VALUE FOR ALPHA=0.05 AND DF=1
CALL UMACH (2, NOUT)
P = 0.95
DF = 1.0
CHI = CHIIN(P,DF)
C COUNT THE REJECTED HYPOTHESIS OF NON-CAUSALITY

IF (TESTAT.GE.CHI) THEN
ICOUNT=ICOUNT+1

ELSE
ICOUNT=ICOUNT
ENDIF
C
1 CONTINUE
C FIND THE PERCENT REJECTION OF NULL HYPOTHESIS

ALPHAO=1.0*ICOUNT/LIM
WRITE (*,*) ICOUNT
WRITE (*,*) ALPHAO
STOP

END
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